
Technische Universität München

Lehrstuhl für Wirtschaftsinformatik und Entscheidungstheorie

Should I Stay or Should I Go?
The No-Show Paradox in Voting and Assignment

Johannes R. Hofbauer

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Rudi Zagst

Prüfer der Dissertation: 1. Prof. Dr. Felix Brandt

2. Prof. Dr. Vincent Merlin
Université de Caen Normandie

Die Dissertation wurde am 23.10.2018 bei der Technischen Universität München eingereicht
und durch die Fakultät für Mathematik am 08.01.2019 angenommen.





should i stay or should i go?
the no-show paradox in voting and

assignment

johannes hofbauer



Johannes Hofbauer: Should I Stay or Should I Go? The No-Show Para-
dox in Voting and Assignment, © January 2019.

e-mail:
johannes.hofbauer@tum.de

This thesis was typeset using a theme due to Hans Georg Seedig
which was slightly modified and is based on LATEX and the Classic-
Thesis style by André Miede, combined with the ArsClassica package
by Lorenzo Pantieri. The text is set in Palatino with math in Euler,
both due to Hermann Zapf. Headlines are set in Iwona by Janusz
M. Nowacki, the monospace font is Bera Mono designed by Bitstream,
Inc. Most of the graphics were created using TikZ by Till Tantau.

mailto:johannes.hofbauer@tum.de


A B S T R A C T

Voting theory revolves around the problem to aggregate possibly con-
flicting individual preferences of a group of voters to a satisfying
collective choice of alternatives. Central objects of study are voting
rules defined for this very task and their axiomatic properties. These
characteristics include Condorcet consistency—an alternative preferred
over any other by a majority of voters should be chosen uniquely—
and immunity to the no-show paradox (NSP): not casting one’s bal-
lot must not result in a more preferred result. In a seminal paper,
Moulin (1988) shows that when we additionally require a voting rule
to always select a single alternative, every Condorcet consistent rule
is prone to the NSP. We continue along this iconic impossibility and
study closely related questions in varying settings.

To begin with, we provide an overview of results subsequently
obtained and categorize them with respect to variants of Condorcet
consistency, different definitions of the NSP and ways out of single-
valuedness.

Following this, we first focus on Moulin’s original theorem. While
susceptibility to the NSP is known for all single-valued Condorcet
consistent rules, it is not well understood to which extent this is of
practical relevance. For six well-known voting rules we therefore an-
alytically and experimentally analyze how often a manipulation by
strategic abstention is possible. Our findings show that, depending
on different assumptions about how the electorate’s preferences are
structured, this strongly varies, but the likelihood is of a magnitude
too high to discard the NSP as merely a theoretical problem.

We then relax the crucial assumption of single-valuedness and first
allow voting rules to select sets of alternatives. In order to enable
voters to compare sets we introduce so-called preference extensions
and obtain corresponding set-valued versions of the NSP. Building on
Fishburn’s extension, we establish an incompatibility together with
Pareto optimality for rules taking into account majority comparisons
only. For the coarser Kelly’s extension, we find the situation to be
more positive and immunity to the NSP is implied by an existing
variant of monotonicity.

A different framework that allows for a relaxation of
single-valuedness are probabilistic voting rules, that select a proba-
bility distribution over alternatives. Due to infinitely many possible
outcomes, this setting calls for the introduction of new versions of
immunity to the NSP that are stronger in the sense that they even
encourage participation. We study to which extent these notions are
compatible with different degrees of efficiency and possible depen-
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dancy on (weighted) majority comparisons only. This part is com-
pleted by a brief study of maximal lotteries, which are Condorcet
consistent, efficient, and immune to the NSP up to a certain level.

Finally, we consider assignment problems where alternatives are no
longer chosen collectively, but distributed to the participants individ-
ually. Probabilistic allocations prepare the ground for us to employ
our previously defined new notions of immunity to the NSP and so
study four well-established assignment rules. We find that all rules
incentivize participation for single voters and groups alike, often in a
very strong manner.
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1
I N T R O D U C T I O N

“The no-show paradox would deserve to be called
the paradox of the act of voting [. . . ]. The no-show
paradox undermines the very rationale of voting;
if by refraining from voting the end result could
be strictly better, why expect people to vote?”

Hannu Nurmi, 1999

Voting theory revolves around the problem to aggregate possibly
conflicting individual preferences of a group of voters to a satisfying
collective choice of alternatives. Central objects of study are voting
rules defined for this very task and their axiomatic properties. The
origins of voting theory date back as far as the 18

th century to Borda
(1784) and Condorcet (1785).3 Over two hundred years ago, these
French scientists laid the foundations for two important yet opposed
families of voting rules: scoring rules that choose based on the alterna-
tives’ positioning within individual preferences and Condorcet exten-
sions that rely on the Condorcet criterion; a notion based on pairwise
majority comparisons. In particular the second group of rules will
play a significant role in what is to follow.

Throughout the years, researchers have found a great many of
incompatibilities of different desirable properties. These character-
istics include basic fairness concepts, varying degrees of efficiency or
immunity to various types of manipulation. Here, one of the presum-
ably most important results is due to Gibbard (1973) and Satterth-
waite (1975) who show that every reasonably fair voting rule that
always selects a single alternative is prone to strategic manipulation,
i.e., voters potentially have the chance to obtain a more preferred
result by misrepresenting their preferences. In this thesis we focus
on a slightly different kind of manipulation: manipulation by strate-
gic abstention from the election process. Given this is possible for
a voting rule and certain combination of individual preferences and
alternatives to choose from, the rule is said to suffer from the no-show
paradox.

The remainder of this chapter is structured as follows: we first give
an informal overview of the general setting and terms in Section 1.1.
This provides the basis for Section 1.2, which discusses related work
about the no-show paradox: its origins, variations, and results for

3 We use the terms voting theory and social choice theory interchangeably.
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2 introduction

modified frameworks. Section 1.3 summarizes the most important
contributions presented in this thesis.

1.1 general voting setting

In the most general voting problem, we are given a set of voters (or
agents) N = {1, . . . ,n} and a set of alternatives (or candidates)
A = {a,b, c, . . . }, |A| = m. All voters i are assumed to have preferences
%i over the alternatives such that they are able to order them from
best to worst, i.e., from most preferred to least preferred. If the pref-
erence ranking does not contain any ties we name it strict in contrast
to weak preferences that allow for indifferences. The collection of all
individual preferences is a preference profile, % = (%1, . . . ,%n).

voting rule. A voting rule f is a function mapping a preference
profile to a nonempty subset of alternatives, the collective choice. If
the voting rule always selects a single alternative we call it single-
valued. In the simple case with two alternatives and two voters with
opposed preferences, single-valuedness however demands that a
voting rule favors either one alternative or one voter.4 This prob-
lem can be overcome by introducing set-valued voting rules that may
select nonempty sets of alternatives or probabilistic voting rules that
choose a probability distribution (or lottery) over the alternatives. Al-
ternatives selected by a voting rule are sometimes also called winning
alternatives.

The majority margin of alternative x over alternative y is the number
of voters preferring x over y minus the number of voters preferring
y over x, gxy = |{i ∈ N : x %i y}|− |{i ∈ N : y %i x}|. Voting rules that
do not rely on the preference profile but on the majority margins
between alternatives only are named pairwise while rules that only
take the sign of gxy into account are majoritarian.

condorcet criterion. Alternative x is a Condorcet winner if it
beats every other alternative in pairwise majority comparisons, i.e.,
gxy > 0 for all y 6= x (Condorcet, 1785). If gxy > 0 for all y 6= x, x
is a weak Condorcet winner. A voting rule that always selects a Con-
dorcet winner whenever one exists is called Condorcet extension or also
said to satisfy Condorcet consistency or the Condorcet criterion. There is
good reason to select a Condorcet winner, but, as already noticed by
Condorcet (1785), Condorcet winners may fail to exist. The possible
nonexistence of Condorcet winners is often named Condorcet paradox;

4 While it is commonly accepted that any voting rule should eventually select one
alternative only, single-valuedness does not allow for a tie-breaking that relies solely
on the individual preferences. This criticism is also expressed by, e.g., Gärdenfors
(1976), Kelly (1977), Barberà (1977), Feldman (1979b), Duggan and Schwartz (2000),
and Ching and Zhou (2002).



1.1 general voting setting 3

see also Example 1.1. Two important representatives of the class of
Condorcet extensions are MaxiMin that selects the alternatives where
the minimal majority margins are maximal, and the top cycle (TC)
that selects the smallest set of alternatives such that every alternative
within this set has a positive majority margin versus every outside
alternative.5

Example 1.1
Consider the preference profiles % and % ′ as depicted below.
When giving preference profiles, we depict individual prefer-
ence rankings as columns with the most preferred alternative
on top. The numbers above each column indicate how many
voters share this preference relation.6

1 1 1

a b c

b c b

c a a

%

1 1 1

a b c

b c a

c a b

% ′

a

bc

1

1

1

Note that in profile %, alternative b is a Condorcet winner while
no Condorcet winner exists in % ′. The majority margins of % ′

are also depicted on the right where an arrow between two alter-
natives represents a positive majority margin. This preference
profile and the corresponding majority graph are well-known
as Condorcet cycle. In case the exact numbers are not relevant,
e.g., when considering majoritarian voting rules, they are omit-
ted. Both TC and MaxiMin choose the Condorcet winner b in
% and {a,b, c} in % ′.

scoring rules. Scoring rules focus on the alternatives’ positioning
within the preference rankings. They assign scores based on pre-
defined score vectors and choose the alternatives with maximal score.
Known examples include plurality, that selects the alternatives most
often ranked first, and Borda’s rule, where for every preference rank-
ing an alternative is given one point per alternative ranked below
(Borda, 1784). So, while plurality chooses {a,b, c} in preference pro-
file % of Example 1.1, b wins under Borda’s rule.

extending preferences. Recall that every voter has preferences
over the alternatives only. Hence, when allowing voting rules to

5 MaxiMin is also known as the Simpson-Kramer method (Black, 1958; Simpson, 1969;
Kramer, 1977) while TC is sometimes also called weak closure maximality, GETCHA,
or Smith set (Good, 1971; Smith, 1973; Schwartz, 1986). MaxiMin is pairwise and TC
a majoritarian voting rule.

6 We choose this notation for the introduction only due to a sometimes large amount
of voters. In all following chapters, the numbers above each column indicate which
individual voters share this preference relation.



4 introduction

choose sets of alternatives or lotteries thereover, we face the problem
that we do not know how voters compare different choices.7 Pref-
erence extensions constitute concepts to lift individual preferences to
preferences over sets or probability distributions.

For sets of alternatives X and Y, Kelly’s extension prescribes that X is
preferred to Y if every alternative in X is preferred to every alternative
in Y (Kelly, 1977). According to Fishburn’s extension, X is preferred to
Y if all alternatives in X \ Y are preferred to all alternatives in X∩ Y
are preferred to all alternatives in Y \X (Fishburn, 1972a). Two very
intuitive extensions are the optimist and pessimist extensions. X is
preferred to Y under the optimist extension if the most preferred alter-
native in X is preferred to the most preferred alternative in Y; for the
pessimist extension the corresponding least preferred alternatives are
what tips the scales.

When it comes to probabilistic voting rules, we say that lottery p
is preferred to q under the stochastic dominance extension (SD) if the
probability that p yields an alternative at least as good as x is greater
or equal than the probability of q yielding an alternative at least as
good as x for all choices of x (see, e.g., Gibbard, 1977; Postlewaite and
Schmeidler, 1986; Bogomolnaia and Moulin, 2001). The downward lex-
icographic extension (DL), which is a refinement of SD, prescribes that
p is preferred to q if either p gives more probability to the most pre-
ferred alternative than q, or p gives more probability to some alterna-
tive x and just as much as q for all alternatives preferred to x (Cho,
2016).

preference models. When quantitatively studying voting rules,
it is a common approach to sample preference profiles based on un-
derlying preference models. A model frequently used is impartial cul-
ture (IC) where a ranking is drawn independently for each individual
voter uniformly at random. Sampling under impartial anonymous cul-
ture (IAC) on the other hand gives equal probability to each anony-
mous preference profile, i.e., the voters’ names are of no relevance.

random assignment. Random assignment is a special case of proba-
bilistic voting theory. In accordance with the setting described above,
voters (here usually named agents) have preferences over a set of al-
ternatives (usually called objects or houses). Contrary to voting rules,
assignment rules do not return a collective choice but an individual
assignment for every agent. For convenience reasons, it is therefore
often assumed that there is an identical number of agents and objects.
Note that presuming agents only care about their own allocation, the
SD and DL extensions defined before also allow to lift individual pref-
erences to preferences over random assignments.

7 Theoretically, one could demand the individual preferences not to be over single
alternatives but over sets or lotteries. This is, however, generally considered imprac-
ticable due to the exponential number of subsets and infinitely many lotteries.



1.2 the no-show paradox in the course of time 5

In recent years, the increasing interest of computer scientists in clas-
sical voting problems together with immense technical advances has
led to the evolvement of computational social choice. Focus here lies
for example on insights gained with the help of computer simula-
tions, the complexity to determine outcomes or misrepresentations,
or even whole proofs found by a computer. The exact borderline
between classical voting or social choice theory and computational
social choice, however, is hard to define and many works hover in
this grey zone. We thus count this thesis to be in good company. For
a more comprehensive summary and related literature we refer to Ar-
row et al. (2002) and Arrow et al. (2011) for general voting theory and
to Brandt et al. (2016b) as well as Shoham and Leyton-Brown (2009),
Rothe (2015), and Endriss (2017) for the field of computational social
choice.

1.2 the no-show paradox in the course of
time

The story of formal study of the voting paradox this thesis revolves
around begins in 1973 with an extensive analysis of point run-off sys-
tems, i.e., multi-round voting rules based on score vectors.8 Here,
Smith (1973) finds that if the electorate is enlarged by an additional
voter having the current winning alternative as first preference, this
cannot cause said alternative to lose the election.

This concept is picked up by Fishburn and Brams (1983), who il-
lustratively point out that a voting rule called single-transferrable vote
(STV) suffers from four different paradoxes: the thwarted-majorities
paradox, multiple-districts paradox, more-is-less paradox, and no-show para-
dox (NSP). The NSP is characterized as “The addition of identical
ballots with candidate x ranked last may change the winner from an-
other candidate to x”, i.e., by joining an electorate, voters with identi-
cal preferences can make their least preferred alternative the winner.
Reversing situations, we see that this is equivalent to these voters
changing the winning alternative from their least preferred to a more
favored one by not showing up for the election.

Example 1.2
In order to capture the reassuring patina of nostalgia, we here
provide the original example of the NSP due to Fishburn and
Brams (1983) with only the alternatives’ names simplified.

8 According to Fishburn and Brams (1983), first mentions go back to Report of the
Royal Commission appointed to enquire into electoral systems : with appendices (1910) and
Meredith (1912).
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Therefore, assume a total of 1 610 voters, three alternatives,
A = {a,b, c}, and preferences as given below.9

419 82 143 357 285 324

a a b b c c

b c a c a b

c b c a b a

STV proceeds in rounds. It chooses the alternative ranked
first by a strict majority of voters if such an alternative exists,
and if not eliminates the alternative ranked first least often be-
fore starting all over again with an updated preference profile.
Hence, for the above profile, we have an initial count of 501

votes for a, 500 votes for b, and 609 votes for c. Since no strict
majority exists, b is eliminated and in the updated profile a is
ranked first 644 times compared to 966 votes for c, which is
eventually selected.

If two voters with preferences a % b % c abstain, a is elimi-
nated in the first round leaving a run-off between b and c. For
this we count 917 votes for b and 691 votes for c. Consequently,
by not participating in the election process, the two abstaining
voters can sway the result in their favor.

Ray (1986) studies the likelihood of similar situations, i.e., how of-
ten the NSP occurs for STV and three alternatives. He finds the prob-
ability to be very high especially for cases where the outcome of plu-
rality and STV differ—a situtation of special importance in the light
of the discussion to exchange plurality for STV (see Ray, 1986).

In his seminal paper, Moulin (1988) generalizes the paradox to its
form still widely accepted today: a voting rule suffers from the NSP
if there exists a situation where some voter can achieve a more pre-
ferred outcome by abstaining from the election process. Rules not
prone to the NSP are said to satisfy participation. Moulin already
notes that multiple well-known rules including Borda’s rule and plu-
rality are immune to the NSP.10 For Condorcet extensions, however,
he derives an iconic impossibility theorem that serves as inspiration
for a multitude of later papers: ifm > 4 and n > 25, there is no single-
valued voting rule satisfying Condorcet consistency and participation.
If m 6 3, both properties can be satisfied simultaneously.11

The minimal value of n is improved by Kardel (2014), who shows
that Moulin’s impossibility already holds for n > 21. In a very recent
paper, Brandt et al. (2017a) employ SAT solving to tighten the bound;
they prove that there do exist single-valued voting rules satisfying

9 Note that this example obviously is not minimal in the number of voters, but rather
meant to illustrate a realistic voting situation.

10 In general, all monotonic scoring rules are immune to the NSP.
11 For instance by MaxiMin with alphabetic tie-breaking.
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Condorcet consistency and participation up to n = 11, m = 4, while
the two properties are incompatible for n > 12.

With respect to the proof for Moulin’s theorem, Nurmi (1999) ar-
gues that each occurrence of the NSP is based on an underlying ap-
pearance of the Condorcet paradox. He also provides an intuitive
proof sketch using this connection.

Revisiting the impossibility, we find that it actually relies on three
different properties: Condorcet consistency, participation and single-
valuedness. Virtually all subsequent work on the NSP tries to either
overcome the incompatibility or find a closely related one by tackling
one of those. We first focus on attempts to modify Condorcet con-
sistency in Section 1.2.1, examine different variants of participation
in Section 1.2.2, and lastly consider prior work regarding set-valued
voting rules in Section 1.2.3 and probabilistic rules in Section 1.2.4.
Papers combining more than one approach are placed where they fit
best. Participation is related to similar properties like strategyproof-
ness and monotonicity in Section 1.2.5, where we also conclude our
overview of the NSP with some remarks.

1.2.1 Varying Condorcet Consistency

Recall from Section 1.1 that alternative x is a Condorcet winner if
gxy > 0 for all y 6= x. If voters’ preferences are strict, this is equivalent
to demanding that there does not exist an alternative y such that
|{i ∈ N : y �i x}| > 1/2n. Hence, it is possible to generalize Condorcet
winners to q-winners by naming x q-winner if there is no y for which
|{i ∈ N : y �i x}| > q ·n, 1/2 6 q 6 1. A voting rule is said to be q-
consistent if it always selects a q-winner whenever the set of q-winners
is nonempty.

Holzman (1988) shows that there exist single-valued voting rules
satisfying both participation and q-consistency if and only ifm 6 3 or
q > m−1/m, i.e., there are few alternatives or the threshold q is large
which corresponds to a potentially larger—but still possibly empty—
set of q-winners. With one later exception (Pérez et al. (2015), see
Section 1.2.3), Condorcet consistency is otherwise widely accepted as
most basic of the three properties and thus left unchanged.

1.2.2 Varying Participation

We have already seen that the first two works dealing with the NSP
use definitions thereof that differ from the one in Moulin’s theorem.
In contrast to a general comparison between winning alternatives,
they only focus on the additional voter’s either most (Smith, 1973) or
least preferred alternative (Fishburn and Brams, 1983). It is those two
ideas that most later papers pick up in order to propose variants of
the NSP.
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Pérez (1995) considers a setting where multiple alternatives may be
chosen and defines two new properties reminiscent of participation:
monotonicity in the face of new voters and choice participation. The for-
mer prescribes that when a voter with most preferred alternative x
joins the electorate and x was among the winning alternatives before,
it has to remain so. According to the latter, if the additional voter
prefers x to y and x was chosen without him, then if y is chosen if he
participates, so has to be x. Pérez develops that monotonicity in the
face of new voters is incompatible with Condorcet consistency under
some additional assumptions similar to duality as defined by Fish-
burn (1973). Choice participation cannot be satisfied simultaneously
with Condorcet consistency irrespective of further properties.

Two stronger variants of the NSP are defined by Pérez (2001). A
voting rule suffers from the positive strong NSP if there exists a situ-
ation where some voter’s most preferred alternative is chosen if he
abstains but not chosen if he participates. Conversely, it is prone to
the negative strong NSP if there exists a situation where some voter’s
least preferred alternative is chosen if he participates but not chosen
if he abstains.12 It is shown that both strong paradoxes arise for all
Condorcet extensions satisfying different dominance-inspired criteria
relying on (weighted) majority comparisons. More precisely, this af-
fects most known majoritarian and pairwise Condorcet extensions
with the exception of Young’s rule for the negative strong NSP and
MaxiMin for both.

This result is built upon by Kasper et al. (2017) who define a Con-
dorcet consistent set-valued voting rule that is immune to the posi-
tive strong NSP and negative strong NSP. At the same time this rule
is maximal with respect to the set of alternatives chosen in the sense
that all other Condorcet consistent voting rules immune to both para-
doxes must choose a subset thereof.

If individual preferences are allowed to contain indifferences, the
before-mentioned positive result breaks down: Duddy (2014) proves
that under weak preferences, Condorcet consistency is incompatible
with either strong NSP if there are at least four alternatives.

The positive strong NSP and negative strong NSP are also studied
in the context of specific voting rules. Most notably, Nurmi (2004),
Felsenthal and Tideman (2013), Felsenthal and Nurmi (2016), and
Felsenthal and Nurmi (2018) analyze a grand variety of well-known
rules and give exemplary preference profiles that illustrate violations.

Lepelley and Merlin (2000) consider scoring run-off rules in elec-
tions with three alternatives and six different versions of the NSP that
distinguish between voters joining or leaving the electorate and focus
on most or least preferred alternatives. Using statistical techniques,
Lepelley and Merlin are able to obtain estimates for the likelihood of

12 Both strong paradoxes are defined as violations of positive involvement or negative
involvement as already used by Smith (1973) (see, also, Richelson, 1978; Richelson,
1980; Saari, 1995).
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the NSP to occur under the IC and IAC preference models. They find
that chances for the various paradoxes to occur are lower to middle
two-digit percentages for small n, and generally higher for IC than
for IAC. Also, probabilities tend to decrease as n grows.

In a recent paper, this setting is revisited by Kamwa et al. (2018)
who focus on single-peaked preferences.13 Under this assumption, they
find that multiple scoring run-off rules do not suffer from any variant
of the NSP anymore while for others, e.g., the plurality run-off, the
probabilities of a paradox to occur are significantly lower compared
to the unrestricted domain.

Sanver and Zwicker (2009) undertake a completely different
approach by defining one-way monotonicity as well as half-way mono-
tonicity as weakening thereof. One-way monotonicity requires that
for every manipulation by misrepresentation, reverse misrepresen-
tation is not a valid manipulation. A voting rule satisfies half-way
monotonicity if no voter can manipulate by completely reversing his
preference ranking. Originally thought of as weaker versions of strat-
egyproofness, Sanver and Zwicker show that half-way monotonicity
is implied by participation. The converse statement is proven to
hold additionally assuming homogeneity and reversal cancellation.14

Though connections exist for three and four alternatives, one-way
monotonicity is logically independent from participation. However,
Sanver and Zwicker are able to develop an impossibility similar to
Moulin’s: no single-valued voting rule can satisfy Condorcet consis-
tency and one-way monotonicity simultaneously.

This result is improved by Peters (2017) who establishes that for
single-valued voting rules, Condorcet consistency is incompatible
with half-way monotonicity. Peters’ theorem is shown to hold for
at least four alternatives and either 15 or 24 voters depending on the
parity of n. Surprisingly, neither the statement nor the bounds change
when instead considering set-valued voting rules with the optimist or
pessimist extension.

Different ways to extend participation, one-way, and half-way
monotonicity to set-valued voting rules are also studied by Sanver
and Zwicker (2012).

Twins welcome is a weakening of participation already discussed by
Moulin (1988). Intuitively, it prescribes that if a voter with preferences
identical to the ones of a voter already present, i.e., his twin, joins
the electorate, this must not result in a worse outcome for the two.

13 Intuitively, single-peakedness prescribes that alternatives can be ordered on a left-
right axis and voters’ preferences are determined by proximity to their political view.
Single-peaked preferences go back to Black (1948), we refer to Elkind et al. (2017) for
an overview of structured preferences.

14 Homogeneity prescribes that using multiple copies of the electorate does not change
the outcome while reversal cancellation means that adding two voters with opposed
preferences does not have any effect, either.
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strategyproofness

one-way monotonicity

half-way monotonicity

participation

twins welcome

Figure 1.1: Implications between different properties related to partici-
pation; a solid arrow from one characteristic to another signifies
the former implies the latter; strategyproofness implies partici-
pation if individual preferences may contain indifferences and
the presence of completely indifferent voters does not change
the outcome; half-way monotonicity implies participation if the
voting rule satisfies homogeneity and reversal cancellation.

Moulin shows that, similar to the NSP, no single-valued Condorcet
extension satisfies twins welcome.

Figure 1.1 depicts the relationships between participation and one-
way monotonicity, half-way monotonicity, and twins welcome. Strate-
gyproofness, which can also be seen as two-way monotonicity (Sanver
and Zwicker, 2009), is added for the sake of completeness.

1.2.3 Varying Single-valuedness: Set-valued Voting Rules

The assumption that voting rules always have to select single alterna-
tives is crucial for Moulin’s theorem. Once we allow rules to choose
multiple alternatives—most importantly when no Condorcet winner
exists—there are ways to forgo the incompatibility of Condorcet con-
sistency and participation. Note that permitting voting rules to select
either a set of alternatives or a probability distribution thereover also
influences the idea of participation. Different concepts of how to
extend preferences over alternatives to preferences over sets or lot-
teries result in different notions of participation and thus varying
results.

Jimeno et al. (2009) find that, assuming strict preferences and the
optimist or pessimist extension, all set-valued and Condorcet consis-
tent voting rules suffer from the NSP.15 They also remark that if pref-
erences are instead extended according to Kelly’s or Fishburn’s exten-
sion, there exist Condorcet extensions satisfying participation, e.g., a

15 In fact, Brandt et al. (2017a) note that the statement for optimistic voters is already
implied by Moulin (1988).
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voting rule selecting the set of weak Condorcet winners if nonempty
and TC otherwise.

The former result is revisited by Brandt et al. (2017a) who estab-
lish tight bounds on n. More precisely, there exist Condorcet consis-
tent voting rules satisfying participation with respect to the optimist
extension for up to 16 voters while the same holds for the pessimist
extension and twelve voters. For larger electorates, the two properties
cannot be satisfied simultaneously.

Given that the concept of Condorcet winners is altered to q-winners,
Pérez et al. (2015) show that participation with respect to the optimist
extension is compatible with q-consistency.16 In particular, they de-
fine a voting rule f(q) that satisfies participation if and only if q > 1/ϕ

with ϕ being the golden ratio.
Different well-known majoritarian and pairwise Condorcet exten-

sions are studied by Hofbauer (2014) for Kelly’s, Fishburn’s and Gär-
denfors’ extensions. Hofbauer provides numerous examples for vio-
lations of compatibility with participation.

Pérez et al. (2010) choose to also transfer the Condorcet criterion
to a set-valued notion by defining a similar concept for voting rules
that always select a set of fixed size k 6 m. They derive various in-
compatibilities for these so called Condorcet k-correspondences together
with participation, if individual preferences are extended according
to either the optimist, pessimist, or lexicographic extensions.

1.2.4 Varying Single-valuedness: Probabilistic Voting Rules

Studies of the NSP in a probabilistic framework are only conducted
by a couple of very recent papers. Hofbauer (2014) provides some
initial ideas for concepts that are further developed and thoroughly
discussed later in this thesis. In particular, this includes the definition
of different degrees of participation that prescribe that an additional
voter is never worse off (participation), always at least as good off
(strong participation), or strictly better off (very strong participation).

In this context, Brandt et al. (2017a) show that Condorcet consis-
tency is incompatible with strong participation with respect to the
SD extension.

Aziz (2016) studies connections between the SD and DL extensions
for different degrees of participation and proves various
implications.17 Moreover, the so-called maximal recursive rule is shown
to satisfy very strong participation for both SD and DL.

Subsequent work follows a similar direction. Gross et al. (2017) de-
fine a voting rule named 2-agree that is axiomatically analyzed and
proven to satisfy very strong participation for the SD extension. The

16 In contrast to Holzman (1988), a q-winner here is defined as an alternative that is
preferred to every other alternative by at least q ·n voters.

17 Some of these results can already be found in Hofbauer (2014).
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same holds for rank maximal equal contribution as shown by Aziz et al.
(2018b) who also introduce this new voting rule. For the special case
of dichotomous preferences, i.e., preferences with only two indiffer-
ence classes, Aziz et al. (2017) consider the egalitarian rule, conditional
utilitarian rule, and Nash max product and study them also with respect
to the before-mentioned variants of participation. In particular, they
introduce variants of strategyproofness and existing fairness proper-
ties to convert known impossibility results to possibilities and also
show that all three considered rules satisfy very strong participation.

1.2.5 Related Properties and Concluding Remarks

Participation bears analogies to multiple other well-known proper-
ties of which many have been around before the first mention of the
NSP by Fishburn and Brams (1983). While the resemblance is mostly
one of similar underlying ideas for some, there even exist direct
implications for others. In addition to what was already discussed
in Section 1.2.2, we here present the three most important concepts
strategyproofness, monotonicity, and reinforcement, and discuss their
relationship to participation.18

strategyproofness. While a voting rule satisfies participation if
it is immune to manipulation by strategic abstention, strategyproof-
ness is defined as immunity to strategic misrepresentation of prefer-
ences.19 Though both properties are logically independent, strate-
gyproofness implies participation in restricted settings. For instance,
Brandt (2015) notes that under mild assumptions that make it indis-
tinguishable for a voting rule whether a voter is completely indiffer-
ent or absent, participation follows from strategyproofness.20 Note,
however, that this of course requires that individual preferences are
allowed to contain indifferences.

From a real-world perspective, there are major differences of how
to interpret violations of participation or strategyproofness. While
being manipulable by strategic misrepresentation of preferences is
undoubtedly a severe flaw of any voting rule in theory, it is open
to question whether this is always of practical concern. If determin-
ing a valid manipulation is computationally hard, it may be argued
that a failure of strategyproofness can be disregarded in realistic set-
tings. Intuitively, a potentially existing manipulation becomes irrele-
vant if voters are unable to find it in reasonable time. This idea to use
computational hardness as barrier for manipulation is introduced by

18 Other properties related to participation include for instance manipulation by sincere
truncation of preferences (Fishburn and Brams, 1984).

19 Strategyproofness is dealt with in different contexts by, e.g., Dummett and Farquhar-
son (1961), Gibbard (1973), Satterthwaite (1975), Gibbard (1977), Bogomolnaia and
Moulin (2001), Aziz et al. (2018a), and Brandl et al. (2018) to name only a few.

20 This holds for, e.g., majoritarian or pairwise voting rules.
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Bartholdi, III et al. (1989) and further discussed by, e.g., Conitzer et
al. (2007), Faliszewski et al. (2010), Faliszewski and Procaccia (2010),
Brandt et al. (2013), and Conitzer and Walsh (2016). When it comes to
violations of participation, we find that this argument is rendered in-
applicable. Since the only possible way to alter the election outcome
is to abstain, determining whether this is a successful manipulation is
never more complicated than computing the outcome itself. Thus, a
voting rule’s failure to satisfy participation can be seen as more severe
compared to a violation of strategyproofness.

We are able to reach an identical conclusion using a different line
of reasoning. In case of the voters knowing each other and the elec-
tion process being public or information about the ballots published
afterwards, it may be possible to determine whether a participant
voted strategically.21 Depending on the specific setting, such behavior
might be considered immoral or even despicable, effectively forcing
a voter to vote truthfully. Abstention, on the other hand, might be for
the mere sake of convenience and is therefore often regarded as less
objectionable. Hence, using moral as barrier against manipulation
is presumably more effective for strategic misrepresentation than for
strategic abstention. This again may lead to the assessment of the
NSP being the more severe flaw.

monotonicity. In its standard form, monotonicity is usually de-
fined as follows: given an alternative is chosen by a voting rule, then
if it is strengthened in the preference ranking of one voter while ev-
erything else remains unchanged, it still has to be among the chosen
alternatives (see, e.g., Fishburn, 1982a). At first glance this bears some
resemblances to a weaker form of participation, where giving more
support to a favored alternative by joining the electorate should not
cause said alternative to lose the election. Based on this observation,
Nurmi (1999) poses the question whether a failure of monotonicity
implies the NSP. Campbell and Kelly (2002) show that this is not
the case by suggesting a non-monotonic voting rule satisfying parti-
cipation.

Recently, Núñez and Sanver (2017) revisit the connection between
monotonicity and participation and find some interesting implica-
tions for restricted cases or slight modifications. In particular, for only
two alternatives, participation implies monotonicity and monotonic-
ity together with homogeneity imply participation. For three or more
alternatives, participation implies a weaker version of monotonicity
while the converse does not hold, even together with homogeneity.
Núñez and Sanver also define a lower contour set property λ that is

21 This situation is not particularly unlikely, consider for instance voting in a committee
where the members know each other.
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closely related to participation but logically independent from mono-
tonicity.22

reinforcement. Reinforcement prescribes that if an alternative is
chosen in two disjoint electorates independently, then it should also
be chosen in the union thereof.23 Interpreting one of these two elec-
torates as single voter once more hints at a possible connection to
participation. However, any such hope is moot as Moulin (1988) al-
ready gives two examples of voting rules satisfying participation but
not reinforcement and vice versa. Nevertheless, Saari (1995) shows
that positive involvement implies weak consistency, thus supplying a
connection between variants of participation and reinforcement.

Up to now, we have always discussed the NSP for situations where
the electorate changes, i.e., a voter leaves the electorate leading to
a more preferred outcome, or equivalently joins and receives a less
preferred result. There are, of course, settings where neither join-
ing nor leaving is possible and the closest idea is to misrepresent
as complete indifference.24 Still, this notion is hardly discussed in
the existing literature and most papers are in line with the variable
electorate as originally proposed by Fishburn and Brams (1983) and
Moulin (1988). Following Núñez and Sanver (2017), the difference is
one of cosmetics mostly, anyway. Núñez and Sanver show that for all
regular voting rules, participation with respect to either interpretation
is equivalent.25 We focus on variable electorates whenever applica-
ble and consider complete indifference only when necessary, i.e., in
Chapter 6.

Concepts similar to participation are also considered in slightly dif-
ferent contexts, e.g., by computer scientists working on voting equi-
libria and campaigning (Desmedt and Elkind, 2010; Baumeister et al.,
2012) or in the field of judgment aggregation (Balinski and Laraki,
2011). A decision-theoretic model of participating in elections orig-
inates in works by Downs (1957), Tullock (1967), and Riker and Or-
deshook (1968). These early works deal with the observation that
quite often, a single voter cannot sway the outcome, i.e., does not

22 Participation implies λ while λ together with homogeneity and reversal cancellation
imply participation.

23 Reinforcement is also known as consistency or population consistency and regularly
studied in the literature (see, e.g., Young, 1974a; Fishburn, 1978; Myerson, 1995;
Congar and Merlin, 2012). Young (1974b) shows that all Condorcet extensions vi-
olate reinforcement. Scoring rules, on the other hand, satisfy reinforcement and
even are characterized by it under some additional mild assumptions (Smith, 1973;
Young, 1975). Hence, they constitute a class of rules satisfying both reinforcement
and participation.

24 In fact, we will model abstention as full indifference in Chapter 6 about random
assignment.

25 Regularity prescribes that a voting rule’s choice does not depend on completely
indifferent voters. This property is satisfied by most well-known rules and identical
to independence of indifferent voters as defined in Section 4.1.1.
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gain anything by casting his ballot. The idea to model the influence
of a pivotal voter as a participation game can be traced back to Pal-
frey and Rosenthal (1983), Ledyard (1984), and Palfrey and Rosenthal
(1985). Recently, Levine and Palfrey (2007), Duffy and Tavits (2008),
and Grillo (2017) conducted lab studies to witness individual behav-
ior in such participation games.

For a general overview of various voting paradoxes and an exten-
sive study of which voting rule is prone to which paradox we refer to
Felsenthal (2011). When it comes to scoring rules in particular, Saari
(1989) argues that if Borda’s rule suffers from a paradox, so do all
other scoring rules which are therefore strictly more manipulable.

1.3 contributions

This thesis includes a variety of results that complement the pre-
sented existing work in different areas. We here give an overview
of our most important contributions that is in line with the ordering
of later chapters and loosely so with the ordering of related work.
Connections and dependencies are pointed out whenever suitable.

1.3.1 Analyzing the Likelihood of the No-Show Paradox

Recall that following Moulin (1988), every single-valued Condorcet
consistent voting rule is prone to the NSP. To which extent this is
the case is, however, not well understood even though Fishburn and
Brams (1983) already propose “to assess the likelihood of the para-
dox [. . . ] as an interesting possibility for investigation”. This idea is
pursued by Ray (1986), Lepelley and Merlin (2000), and Kamwa et al.
(2018), but all three papers focus on specific definitions of the NSP
and consider three alternatives only.

Our work is in line with Moulin’s more general definition of parti-
cipation and studies how often the NSP occurs for different single-
valued Condorcet extensions. First, we focus on Copeland’s rule,
Black’s rule, and MaxiMin with alphabetic tie-breaking and analyti-
cally compute the fraction of profiles admitting a manipulation by
strategic abstention for three, three, and four alternatives, respec-
tively, under IAC. This is done using Ehrhart theory (Ehrhart, 1962)
and only possible through recent advances in computer algebra.

contribution 1

We model the set of all anonymous preference profiles for n vot-
ers that are prone to the NSP as polytopes in the six-dimensional
or 24-dimensional Euclidean space. Making use of Ehrhart the-
ory and the computer program Normaliz we determine the ex-
act fraction of profiles that allow for a manipulation depending
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on n. We find that our analytical results are in almost perfect
unison with experimental results obtained via computer simu-
lations.

Limited to the current state of the art, it is impossible to analytically
obtain exact numbers for more than four alternatives. Therefore, we
rely on extensive computer simulations to get an insight into the be-
havior for larger values of m. In addition to the rules mentioned
above, we also analyze Baldwin’s, Nanson’s, and Tideman’s rule with
alphabetic tie-breaking under the preference assumptions IC, IAC, as
well as Mallows’ φ, the urn model, and the spatial model. As far as
we know, this is the only study of Condorcet extensions from a quan-
titative angle apart from the earlier Plassmann and Tideman (2014),
Brandt et al. (2016d), and Bruns et al. (2017).

contribution 2

We experimentally study the manipulability of well-known
single-valued Condorcet extensions. Here, we first derive re-
sults for up to 50 voters and 30 alternatives under IAC. We then
fix the number of alternatives to either 4 or 30 and compare
fractions for up to 1 000 or 200 voters according to five different
preference models. Wherever possible we provide explanations
for characteristics observed.

1.3.2 The No-Show Paradox for Set-Valued Voting Rules

We first focus on majoritarian set-valued voting rules and Fishburn’s
extension to lift preferences over single alternatives to preferences
over sets of alternatives. To allow for the efficient use of a computer,
we introduce a new participation-like condition that is based on ma-
jority graphs instead of preference profiles. This enables us to prove
the incompatibility of Pareto optimality and Fishburn-participation
for majoritarian voting rules via a SAT solver. Manually simplified
and self-contained human-readable versions of the two correspond-
ing computer-found proofs are included.

contribution 3

We show that no majoritarian and Pareto optimal set-valued
voting rule satisfies Fishburn-participation whenever m > 4.
If individual preferences are required to be strict, an identical
statement holds for m > 5.

Next, we direct attention to Kelly’s extension and find that results
are a lot more positive here, even without restricting rules to be ma-
joritarian. Most notably we find that there are attractive Condorcet
extensions satisfying Kelly-participation, which stands in contrast to
previous negative results for set-valued voting rules (see, e.g., Jimeno
et al., 2009; Pérez et al., 2010; Brandt et al., 2017a).
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contribution 4

We prove that set-monotonicity together with independence of
indifferent voters implies Kelly-participation. For majoritarian
voting rules, set-monotonicity alone suffices for the same impli-
cation, even when preferences have to be strict.

1.3.3 The No-Show Paradox for Probabilistic Voting Rules

To the best of our knowledge, participation has only been considered
for probabilistic voting rules by Hofbauer (2014) before [1] which
most parts of Chapter 5 are based on. In order to compare two
lotteries, we rely on the SD extension mostly. We first discuss two
new strengthenings of participation that are either very challenging
or virtually impossible to be satisfied by single-valued or set-valued
voting rules. These novel variants of participation are picked up and
worked with in subsequent papers (see, e.g., Aziz, 2016; Brandt et al.,
2017a; Gross et al., 2017; Aziz et al., 2017; Aziz et al., 2018b).

contribution 5

In addition to regular participation, we introduce two stronger
versions: strong participation that prescribes that a voter always
weakly prefers the outcome obtained when he participates com-
pared to the outcome when he abstains. Very strong participation
requires that a voter always strictly prefers the outcome ob-
tained when he participates compared to the outcome when
he abstains whenever this is possible, and weakly prefers the
former to the latter otherwise.

In the following, we begin by studying very strong participation and
obtain a number of results for different classes of probabilistic voting
rules and different degrees of efficiency including ex post efficiency
and unanimity.

contribution 6

We show that very strong participation is prohibitive for ma-
joritarian voting rules, pairwise and unanimous voting rules, or
Condorcet extensions. It can, however, be satisfied by ex post
efficient voting rules.

For the weaker notions of strong participation and participation we
also obtain mixed results.

contribution 7

We show that for majoritarian voting rules strong participation
is incompatible with unanimity while participation and ex post
efficiency are mutually exclusive. Strong participation is com-
patible with a strong variant of efficiency based on SD even
when voting rules are required to be pairwise.
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Lastly, we study a probabilistic Condorcet consistent voting rule
called maximal lotteries and show that it satisfies a notion of parti-
cipation that is stronger than regular participation but weaker than
strong participation. We also characterize maximal lotteries using
this version of participation. Note that strong participation alone is
incompatible with Condorcet consistency (Moulin, 1988; Brandt et al.,
2017a).

contribution 8

We show that maximal lotteries satisfy participation but fail to
satisfy strong participation. In addition, we provide a unique
characterization of maximal lotteries using participation with
respect to the pairwise comparison extension.26

1.3.4 The No-Show Paradox for Random Assignment Rules

It is not possible to directly transfer the concept of strategic abstention
to the assignment setting as we usually assume an identical number
of agents and objects. This problem is tackled via two approaches
that turn out to be equivalent for cases where both are applicable.

contribution 9

We discuss different ways to model abstention in the random
assignment setting and define various degrees of participation
based on results presented in Chapter 5.

Next, we apply this framework for participation to three well-known
assignment rules, random serial dictatorship, the (extended) probabilistic
serial rule, and the Boston mechanism as well as the Condorcet consis-
tent class of popular random assignments. For some rules we find our
results to be in sharp contrast to their susceptibility to manipulation
by misrepresentation of preferences.

contribution 10

We show that all studied rules incentivize participation for sin-
gle voters and groups of voters alike, often even in a very strong
way.

underlying publications

This thesis is based on various papers published over the last years
and also presented at different international conferences and work-
shops. A full list is given on page vii. With respect to the remainder

26 A lottery p is preferred to a lottery q according to the pairwise comparison extension
if the chance that p yields an alternative preferred to what q returns is higher than
the probability that q returns an alternative preferred to what is given by p.
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of this thesis, Chapter 3 is based on [5] while Chapter 4 is based on [2],
an earlier version of which can also be found as part of Geist (2016).
Chapter 5 is based on [1] and [4], parts of the latter are included in
Brandl (2018), too. Lastly, Chapter 6 is based on [3].

excluded work

Apart from papers specified on page vii, my work also contributed
to publications that do not fit the exact topic of this thesis. Though
omitted, the corresponding papers are listed below for the sake of
completeness:

• d-dimensional stable matching with cyclic preferences. Mathe-
matical Social Sciences, 82:72–76, 2016.27

• Majority graphs of assignment problems and properties of pop-
ular random assignments. In Proceedings of the 16th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 335–343. IFAAMAS, 2017 (with F. Brandt and M. Su-
derland).28

27 Also presented at the 5th World Congress of the Game Theory Society (GAMES), 2016.
28 An earlier version was also presented at the 6th International Workshop on Computa-

tional Social Choice (COMSOC), 2016.





2
P R E L I M I N A R I E S

In this chapter, we provide the general basis for what is to follow.
We here limit ourselves to voting concepts used throughout this the-
sis and postpone definitions of specific notions to the corresponding
chapters. In particular, the random assignment framework, which
Chapter 6 is built upon exclusively, is introduced in Section 6.1. Note
that some parts of what is presented here were already informally
mentioned in Section 1.1.

2.1 fundamentals

Let A be a finite set of m alternatives and N be an infinite set of voters. alternative
voterBy F(N) we denote the set of all finite and nonempty subsets of N

where an element of F(N) is denoted by N, |N| = n. N is often also
named an electorate. For some N, i ∈ N, we write N−i for N \ {i}, i.e., electorate

the electorate without voter i.
Each voter i is assumed to be endowed with a preference relation or (weak) preference

relationranking %i over the alternatives. Formally, a (weak) preference relation
is a complete, reflexive, and transitive binary relation, %i ⊆ A×A.29

The set of all preference relations over A shall be denoted by %(A).
Whenever x %i y, we say that i (weakly) prefers x to y. By �i and
∼i we denote the strict preference as well as the indifference part of
%i, respectively. Formally, x �i y if x %i y and y 6%i x, and x ∼i y if
x %i y and y %i x. We denote voter i’s most preferred alternatives in
a set X ⊆ A by max%i(X),

max %i(X) = {x ∈ X : x %i y for all y ∈ X}.

In case %i additionally is antisymmetric, i.e., does not contain any
indifferences, we say that %i is strict.30 To compactly represent pref- strict preference

relationerences we use comma-separated lists with all alternatives among
which a voter is indifferent placed in a set; for instance %i : x, {y, z}
stands for x �i y ∼i z.

A collection of one preference relation per voter is named preference
profile. More precisely, we define a preference profile as a function preference profile

from a set of voters N to the set of preference relations %(A). The set

29 Complete prescribes that for all x,y ∈ A, if x 6%i y, then y %i x while reflexive means
that for all x ∈ A, x %i x. Furthermore, a relation %i is transitive if for all x,y, z ∈ A
such that x %i y and y %i z we have that x %i z.

30 Formally, a relation is antisymmetric if for all x,y ∈ A, x %i y and y %i x implies
x = y.
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of all possible preference profiles on A is denoted by %(A)F(N) with
%(A)N being the equivalent for a fixed N ∈ F(N). In order for voters
to be able to join or leave the electorate, we define for a preference
profile % ∈ %(A)N and i ∈ N, j ∈N,S ⊆ N, T ⊆N:

%−i = % \ {(i,%i)} %+j = %∪ {(j,%j)}

%−S = % \
⋃
k∈S

{(k,%k)} %+T = %∪
⋃
k∈T

{(k,%k)}

Whenever |S|, |T | = 2 we also write %−i,j or %+i,j and omit the set
braces for better readability. Slightly abusing notation we regularly
identify preference profiles with the collection of individual prefer-
ences only, % = (%1, . . . ,%n). Preference profiles are often depicted
in tabular form with individual voters’ names in the top row and
the corresponding preferences as column below with more preferred
alternatives given above less preferred ones (see Example 2.1).

Given a preference profile % ∈ %(A)N, we define the majority mar-
gin gxy(%), x,y ∈ A of alternative x over alternative y as the numbermajority margin

of voters that prefer x over y minus the number of voters who prefer
y over x,

gxy(%) = |{i ∈ N : x %i y}|− |{i ∈ N : y %i x}|.

Whenever % is clear from the context we just write gxy. Note that
trivially gxy = −gyx. The majority relation of % is denoted as %M,majority relation

x %M y if gxy(%) > 0, with �M being its strict part and ∼M the indif-
ference part. Majority margins as well as the majority relation are of
special interest as they allow for the succinct representation of pref-
erence profiles. In this respect, (gxy)x,y∈A can be written as a matrix
M ∈ ZA×A while the same holds for %M which can conveniently be
represented as matrix M ∈ {−1, 0, 1}A×A. Alternatively, it is common
to employ directed graphs with one vertex per alternative and either
a weighted edge from x to y with weight gxy, or an unweighted edge
from x to y if x %M y. In both cases, we only depict edges with
positive weight, i.e., where gxy > 0, for reasons of clarity. These di-
rected graphs are named weighted majority graphs or majority graphs,(weighted) majority

graph respectively.31

Example 2.1
Consider N = {1, 2, 3} and A = {a,b, c,d}. A possible preference
profile % ∈ %(A)N is depicted below on the left. In the middle
we see the corresponding weighted majority graph with edge
labels gxy while the (unweighted) majority graph representing
%M is shown on the right.

31 Weighted majority graphs and majority graphs are also known as weighted (weak)
tournaments or (weak) tournaments, respectively (see, e.g., Fischer et al., 2016;
Brandt et al., 2016a).
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1 2 3

a b c

b d a

d c b

c a d

a b

cd

1

1
1

1
3

1

a b

cd

For a set A of alternatives we denote by ∆(A) the set of all proba-
bility distributions (or lotteries) over A, i.e., lottery

∆(A) =

{∑
x∈A

p(x) · x :
∑
x∈A

p(x) = 1 and p(x) > 0 for all x ∈ A

}
.

Here, p(x) is the probability lottery p ∈ ∆(A) awards to alternative
x ∈ A. In addition, we define p(X) =

∑
x∈X p(x) to be the total prob-

ability for alternatives x ∈ X ⊆ A. We write lotteries as convex combi-
nation of alternatives, i.e., 1/3a+ 1/3b+ 1/3 c prescribes the uniform
lottery over {a,b, c}. The support of a lottery p ∈ ∆(A) consists of all support

alternatives that are awarded positive probability, i.e.,

supp(p) = {x ∈ A : p(x) > 0}.

2.2 voting rules

Our central objects of study are voting rules, i.e., rules that map
a preference profile to a collective choice of alternatives. Based on
which form this collective choice is to take, we distinguish between
single-valued, set-valued, and probabilistic voting rules.32 Formally, a
single-valued voting rule is a function f : %(A)F(N) → A, for a set-
valued voting rule we have f : %(A)F(N) → 2A \ ∅, and a probabilistic
voting rule is defined as f : %(A)F(N) → ∆(A). For the sake of read-
ability, we sometimes slightly abuse notation and write f(%i) instead
of f((i,%i)) when only a single voter’s preferences are of relevance.
Whenever it is either clear from the context which specific type of
rule we are concerned with, or we define characteristics relevant for
all variants, we regularly just speak of voting rules.

Two standard properties of voting rules are anonymity and neutral-
ity. Anonymity prescribes that a voting rule is invariant under the re- anonymity

naming of voters, i.e., f(%) = f(% ′) for N,N ′ ∈ F(N) and % ∈ %(A)N,
% ′ ∈ %(A)N

′
if there exists a bijection π : N→ N ′ and % ′i = %π(i)

for all i ∈ N. For a permutation π : A→ A and a preference rela-
tion %i, we define the relation %πi as π(x) %πi π(y) if x %i y. Now,
a voting rule f is neutral if for all permutations π : A→ A and all neutrality

% ∈ %(A)F(N) we have f(%π) = π(f(%)), i.e., if all voters consistently

32 Note that throughout the literature they are often also referred to as resolute (or
single-valued) social choice functions, irresolute (or set-valued) social choice func-
tions, and social decision schemes or probabilistic social choice functions.
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rename the alternatives in their corresponding preferences, then an
identical renaming applies to f(%).33 Anonymity and neutrality are
often named symmetry with respect to voters and alternatives, respec-
tively. They can be seen as basic fairness conditions as they guarantee
a rule is unbiased.

Many well-known voting rules do not rely on the exact preference
profiles but choose based on (weighted) majority comparisons only.
In this sense, we say a voting rule f is pairwise if it is neutral andpairwiseness

focuses on the majority margins only, i.e., f(%) = f(% ′) whenever
gxy(%) = gxy(% ′) for all x,y ∈ A where %,% ′ ∈ %(A)F(N) (see, e.g.,
Young, 1974b; Zwicker, 1991). A voting rule f is called majoritar-
ian if it is neutral and chooses based on the majority relation only,majoritarianness

i.e., f(%) = f(% ′) whenever %M = % ′M.34 For majoritarian rules f we
sometimes also write f(%M) instead of f(%) for reasons of simplicity.
When not reasoning about specific profiles, we generalize this to f(G)
which is equivalent to f(%) for all % ∈ %(A)F(N) such that %M = G.
Note that every majoritarian voting rule is also pairwise and every
pairwise rule satisfies anonymity and neutrality.

2.3 condorcet criterion

An alternative x is named Condorcet winner if it beats every other al-Condorcet winner

ternative in a pairwise majority comparison, i.e., x is Condorcet win-
ner if x �M y for all y ∈ A \ {x} (Condorcet, 1785). Condorcet win-
ners are unique in the sense that whenever one exists, it is the only
one.35 As already noted by Fishburn (1977), there is good reason for a
voting rule to choose a Condorcet winner as “the principle embod-
ies the democratic precept of rule by majority will. Moreover, the
majority candidate or alternative, when it exists, constitutes a stable
equilibrium in that it cannot be beaten or displaced by a challenger in
a direct majority vote between the two”.36 Note, however, that Con-
dorcet winners may fail to exist which is often termed the Condorcet
paradox (see Example 2.1).Condorcet paradox

A voting rule that always uniquely selects the Condorcet winner
whenever one exists is called a Condorcet extension or said to satisfyCondorcet extension

Condorcet consistency or the Condorcet criterion. For probabilistic votingCondorcet
consistency rules, this transfers to giving probability one to the Condorcet winner.

33 For probabilistic voting rules this translates to f(%)(x) = f(%π)(π(x)) for all x ∈ A.
34 Majoritarian voting rules are also known as tournament solutions while pairwise rules

are often named weighted tournament solutions (see, e.g., Brandt et al., 2016a; Fischer
et al., 2016). Though not strictly identical, both concepts can also be identified as C1

and C2 functions (Fishburn, 1977).
35 This is not the case for weak Condorcet winners x defined by x %M y for all y ∈ A.

Theoretically, all alternatives can be weak Condorcet winners at the same time.
36 For similar arguments see also, e.g., Dodgson (1876), Black (1958), Young (1988), and

Dutta (1988).
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The class of Condorcet extensions encompasses a grand variety of
well-known and well-studied voting rules for all frameworks. This
includes the top cycle (Good, 1971; Smith, 1973; Schwartz, 1986), the
uncovered set (Fishburn, 1977; Miller, 1980), the minimal covering set
(Dutta, 1988), and Copeland’s rule (Copeland, 1951) which are all ma-
joritarian set-valued voting rules. Important representatives for pair-
wise Condorcet consistent set-valued voting rules include Kemeny’s
rule (Kemeny, 1959), MaxiMin (Black, 1958), ranked pairs (Tideman,
1987), Black’s rule (Black, 1958), and Tideman’s rule (Tideman, 1987).
Equipped with a suitable tie-breaking mechanism, all these rules di-
rectly define single-valued variants. When it comes to probabilistic
voting rules or random assignment rules, maximal lotteries (Fishburn,
1984b) and their equivalent in the assignment setting, popular random
assignments (Kavitha et al., 2011), are most established.

2.4 participation

We now turn to the matter of strategic manipulation, most impor-
tantly manipulation by abstention. By manipulation of a voting rule
we mean that either a single voter or a group of voters can achieve
a more preferred result by not submitting their corresponding prefer-
ence relation %i or %S. While the definition of a more preferred result
is obvious for single-valued voting rules, it is intuitively unclear for
set-valued or probabilistic rules as the individual preferences %i only
allow for the comparison of single alternatives. We can easily argue
that a voter i with preferences %i : a,b, c should prefer {a,b} to {c},
but whether {a, c} or {b} is better for him is hard to tell.

Since it is generally considered impracticable to demand for pref-
erences over all subsets of alternatives or lotteries thereover, we thus
require an instrument to extend the preference relation %i. Func-
tions fulfilling this need we name preference extensions. More formally, preference extension

a preference extension Σ maps preferences over alternatives %i to
possibly incomplete preferences %Σi over either sets of alternatives
or lotteries.37 A multitude of preference extensions has been estab-
lished in the past decades, we refer to Barberà et al. (2004) as well as
Cho (2016) and Brandt (2017) for an overview of possible ways to lift
preferences to sets and lotteries, respectively. Specific extensions rele-
vant to this thesis are discussed in Section 4.1.2 and Section 5.1.1.

Intuitively, the no-show paradox prescribes that by abstaining from
the election process, a voter receives a more preferred result. Being
prone to the no-show paradox is without question a severe flaw of any
voting rule, and indeed Nurmi (1999) argues that “[v]ulnerability to
the no-show paradox is a serious drawback in a voting system. After

37 The terms set extension and lottery extension are also common throughout the litera-
ture.
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all, any reasonable voter would expect that by voting he is contribut-
ing to the possibility that his favorite wins. The realization that the
very act of communicating his true preferences by voting makes the
outcome worse from his point of view than it would have been had
he decided not to vote at all, may be demoralizing. It certainly under-
mines the very rationale of going to the polls.”

More formally, given a suitable preference extension Σ, we say a
voting rule f is prone to the no-show paradox (NSP) or equivalently ma-no-show paradox

nipulable by strategic abstention if there exist A, N ∈ F(N) and
% ∈ %(A)N such that f(%−i) �Σi f(%) for some i ∈ N. If f is immune
to the NSP we say that f satisfies Σ-participation.38participation

For groups of voters we additionally define a group-based notion
of participation in a similar way. A voting rule f is said to satisfy
Σ-group-participation if there are no A, N ∈ F(N), % ∈ %(A)N, andgroup-participation

S ⊆ N such that f(%−S) �Σi f(%) for all i ∈ S. Group-participation
obviously implies participation.

For varying definitions of participation we refer to Section 1.2,
which also provides further motivation and deals with related prop-
erties.

In addition to participation, we also define strategyproofness that
captures immunity against manipulation by misrepresentation of
preferences. Formally, for some preference extension Σ, we say a
voting rule f is manipulable by strategic misrepresentation if there ex-
ist A, N ∈ F(N), i ∈ N, and %,% ′ ∈ %(A)N with %j = % ′j for all
j ∈ N−i such that f(% ′) �Σi f(%). If f is not manipulable by strategic
misrepresentation according to extension Σ, we name it Σ-strategyproof.strategyproofness

In analogy to before we also define group-strategyproofness. A
voting rule f satisfies Σ-group-strategyproofness if there are no A,group-

strategyproofness N ∈ F(N), S ⊆ N, and %,% ′ ∈ %(A)N with %j = % ′j for all j ∈ N \ S

such that f(% ′) �Σi f(%) for all i ∈ S. Group-strategyproofness obvi-
ously is stronger than strategyproofness and thus the former implies
the latter. We refer to Section 1.2.5 for a discussion of the relationship
between participation and strategyproofness.

2.5 efficiency

Demanding for immunity against manipulation either by strategic
abstention or misrepresentation by single voters and groups alike is
undoubtedly important, but does not make a good voting rule on its
own. A voting rule that always chooses an identical outcome is not
manipulable but generally not ideal, either. At this point, (Pareto)
efficiency becomes relevant. Intuitively, a voting rule is said to be

38 If f is single-valued or the extension is clear from the context we forgo the Σ and
speak of participation.
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efficient if it never chooses an outcome for which another one exists
that is preferred by all voters.

On its most basic level, this can be translated to unanimity, which unanimity

prescribes that if all voters report an identical unique top alternative,
this alternative has to be chosen uniquely (see, e.g., Sen, 2011; Pi-
cot and Sen, 2012; Chatterji et al., 2014). A probabilistic voting rule
satisfies unanimity if this top alternative is given probability one.

The concept of Pareto optimality is stronger as it also restricts pos-
sible choices when voters do not share a common most preferred al-
ternative. Given a preference profile % ∈ %(A)N, alternative x Pareto
dominates y if x %i y for all i ∈ N and there exists j ∈ N such that Pareto dominance

x �j y. If x is not Pareto dominated by any y ∈ A, x is called Pareto
optimal. In the same sense, we name a single-valued or set-valued Pareto optimality

voting rule Pareto optimal if it never chooses Pareto dominated alter-
natives. For probabilistic voting rules we use the term ex post effi-
ciency to prescribe that they never put positive probability on Pareto ex post efficiency

dominated alternatives (see, e.g., Gibbard, 1977; Bogomolnaia et al.,
2005; Dutta et al., 2007). Pareto optimality implies unanimity, which
is also satisfied by every Condorcet extension.

In Example 2.1, b Pareto dominates d. Alternatives a, b, and c are
Pareto optimal just as any Pareto optimal voting rule has to choose a
subset of {a,b, c}. For an ex post efficient probabilistic voting rule the
chosen lottery p has to satisfy p(d) = 0.

In particular for probabilistic voting rules, it is also common to
define degrees of efficiency based on different preference extensions.
For an extension Σ, we say a lottery p Σ-dominates lottery q in profile Σ-dominance

% ∈ %(A)N if p %Σi q for all i ∈ N and there exists j ∈ N such that
p �Σj q. Lottery p is called Σ-efficient if there is no q that Σ-dominates Σ-efficiency

it and similarly a probabilistic voting rule is called Σ-efficient if it never
chooses a Σ-dominated lottery (see, e.g., Bogomolnaia and Moulin,
2001; Aziz et al., 2015; Aziz et al., 2018a).

Combining individual and social goals, i.e., immunity to different
concepts of manipulation and satisfying varying degrees of efficiency,
turns out to often be impossible, irrespective of the exact situation
(see, e.g., Gibbard, 1973; Satterthwaite, 1975; Katta and Sethuraman,
2006; Aziz et al., 2018a; Brandl et al., 2018).





3
A N A LY Z I N G T H E L I K E L I H O O D O F T H E N O -S H O W
PA R A D O X

We begin this chapter by recalling the iconic impossibility theorem by
Moulin (1988): every single-valued Condorcet extension is prone to
the NSP. Moulin’s theorem has sparked a whole line of research, see
Section 1.2 for an overview. However, as previously discussed, most
of the works following Moulin (1988) focus on the axioms used and
the authors vary either single-valuedness, Condorcet consistency, the
definition of the NSP, or multiple criteria at the same time.

A different question, posed first by Fishburn and Brams (1983), re-
ceives considerably less attention: “[i]s it indeed true that serious
flaws in preferential voting such as the No-Show Paradox [. . . ] are
sufficiently rare as to cause no practical concern?” Put differently,
Fishburn and Brams propose “to assess the likelihood of the para-
dox [. . . ] as an interesting problem for investigation”. Even though a
long while has passed since then, we are aware of only three papers
having tackled this issue.39 However, all of them focus on specific
definitions of the NSP and are limited to three alternatives.

We here stick to Moulin’s definition of the NSP and study
popular majoritarian and pairwise Condorcet extensions, among them
Copeland’s rule, MaxiMin, Black’s, and Tideman’s rule. In particu-
lar for MaxiMin, we push the boundaries of previous research and
obtain exact analytical results for four alternatives and the impartial
anonymous culture model. These numbers are obtained via modeling
occurrences of the NSP by describing susceptible preference profiles
using linear inequalities. Ehrhart theory (Ehrhart, 1962) allows for a
count of profiles, and since the total number of profiles is known, we
obtain an exact fraction.

Furthermore, we complement our analytical results by elaborate
computer simulations that are perfectly aligned for up to four alter-
natives and allow for insights way beyond. Also included in our ex-
periments are comparisons of different preference models that once
more allow for interesting observations.

The remainder of this chapter is structured as follows: we first
specify the setting considered here in Section 3.1 together with defi-
nitions of relevant voting rules and preference models. In Section 3.2,
we discuss two ways of quantifying the NSP, exact and experimental
analysis. Obtained results are presented and discussed in Section 3.3,
which is followed by some concluding remarks in Section 3.4.

39 These being Ray (1986), Lepelley and Merlin (2000), and Kamwa et al. (2018), see
Section 1.2 for some further details.
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3.1 preliminaries

For this chapter, we assume all individual preferences to be strict,
i.e., for any two alternatives x,y ∈ A, x 6= y, and every voter i ∈ N,
we have that either x �i y or y �i x. We therefore denote preference
profiles by � instead of % here in order to be clear.

3.1.1 Voting Rules

We study six different voting rules in terms of how likely it is that
a voter can manipulate by abstaining strategically. The selection of
rules is mainly based on three criteria:

• Discriminability. We want to minimize the influence of
tie-breaking, which we have to make use of to obtain single-
valued voting rules.

• Simplicity. We have to be able to model the choice sets using
linear inequalities for the analytical Ehrhart theory approach
and in addition voters generally prefer ‘simpler’ rules.

• Efficient computability. This is a basic requirement to enable
rigorous and comprehensive simulations.40

In the following, we briefly define all considered voting rules.

black’s rule. For a preference profile � ∈ %(A)N and an alterna-
tive x ∈ A, we define the Borda score sx(�) of x asBorda score

sx(�) =
∑
i∈N

|{y ∈ A : x �i y}|.

The alternatives with maximal Borda score among all alternatives are
named Borda winners (Borda, 1784). For our modeling by linear in-Borda winner

equalities and to be in line with other rules, we equivalently say that
an alternative x is Borda winner if it maximizes

∑
y∈A\{x} gxy.41 Now,

Black’s rule (Black, 1958) chooses the Condorcet winner whenever itBlack’s rule

exists and otherwise returns a winner according to Borda’s rule:

fBlack(�) ∈

{
x if x is a Condorcet winner in �
arg maxx∈A

∑
y∈A\{x} gxy otherwise.

baldwin’s rule. Baldwin’s rule (Baldwin, 1926) proceeds in multi-Baldwin’s rule

ple rounds. In each round, we drop the alternative with lowest Borda
score and then continue with the preference profile reduced by one

40 Note that other discriminating Condorcet extensions such as Kemeny’s rule, Dodg-
son’s rule, and Young’s rule are NP-hard to compute (see, e.g., Brandt et al., 2016b).

41 To be precise, what we define here is also known as the asymmetric and symmetric
Borda scores and known to be affinely equivalent (see, e.g., Zwicker, 2016, and the
proof of Theorem 5.10).
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alternative, which is used to calculate updated scores. If multiple—
but not all—alternatives are tied last, we delete all of them. Baldwin’s
rule chooses one of the alternatives remaining when no more alterna-
tive can be removed.

nanson’s rule. Nanson’s rule (Nanson, 1883; Niou, 1987) is simi- Nanson’s rule

lar to Baldwin’s rule in so far as it also focuses on the Borda scores
and gradually eliminates alternatives. However, in contrast to before,
we now remove all alternatives with average or below-average Borda
score in every round. Nanson’s rule returns an alternative out of
those remaining when all alternatives have identical score.

maximin. MaxiMin (Black, 1958), which is also known as the MaxiMin

Simpson-Kramer method (Simpson, 1969; Kramer, 1977), looks at the
worst pairwise majority comparison for each alternative. It then re-
turns an alternative with maximal such score, formally

fMaxiMin(�) ∈ arg max
x∈A

min
y∈A\{x}

gxy.

tideman’s rule. In contrast to MaxiMin, Tideman’s rule (Tideman, Tideman’s rule

1987) focuses on the sum of all pairwise majority defeats. It yields
an alternative where this sum is closest to zero in terms of absolute
value, i.e.,

fTideman(�) ∈ arg max
x∈A

∑
y∈A\{x}

min(0,gxy).42

copeland’s rule. Copeland’s rule (Copeland, 1951) only relies on Copeland’s rule

the majority relation and not the exact majority margins. It chooses an
alternative where the number of majority wins plus half the number
of majority draws is maximal:

fCopeland(�) ∈ arg max
x∈A

|{y ∈ A : x �M y}|+ 1/2 |{y ∈ A \ {x} : x ∼M y}|

In order to obtain well-defined single-valued voting rules, we em-
ploy alphabetic tie-breaking for all rules defined above. Note that
the alphabetic ordering does not influence our results as long as we
assume that there is some underlying ordering. This changes if we
allow for tie-breaking based on the preference profile or choice set,
something we however want our tie-breaking to be independent of.
All presented voting rules can be computed in polynomial time and
do not rely on the exact preference profile �, but only on the majority

42 Tideman’s rule is arguably the least well-known voting rule presented here. It was
proposed to efficiently approximate Dodgson’s rule and is not to be confused with
ranked pairs, which is sometimes also called Tideman’s rule. Also note that the
‘dual’ rule returning alternatives for which the sum of weighted pairwise majority
wins is maximal is not a Condorcet extension.
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margins that can conveniently be represented by a skew-symmetric
matrix or a weighted majority graph.

Example 3.1
Consider the preference profile � with seven voters and four al-
ternatives depicted below together with the matrix of pairwise
majority margins.

1, 2, 3 4, 5, 6 7

a d b

c c d

b b a

d a c

�

a b c d


a 0 −1 1 −1

b 1 0 −5 1

c −1 5 0 −1

d 1 −1 1 0

In the absence of a Condorcet winner, Black’s rule relies on the
Borda scores which can be computed to be s(�) = (10, 9, 12, 11)
or, affinely equivalent, (−1,−3, 3, 1) when determining them
based on the majority margins only. Hence, fBlack(�) = c.

Having the lowest Borda score, b consequently is the first al-
ternative to be eliminated when applying Baldwin’s rule. After
dropping c next, we have a strict majority in favor of d against
a and thus fBaldwin(�) = d.

In the first round of Nanson’s rule, we eliminate a and b since
both alternatives have a Borda score which is below average.
Thereafter, we obtain a strict majority for d against c, meaning
d has higher Borda score and it follows fNanson(�) = d.

For MaxiMin, we analyze all alternatives’ worst pairwise ma-
jority comparison and see that a, c, and d are tied with -1. Due
to alphabetic tie-breaking we have fMaxiMin(�) = a.

Tideman’s rule counts the sum of all pairwise majority de-
feats, which we find to be 2, 5, 2, and 1 for a, b, c, and d, re-
spectively. The alternative with minimal sum is chosen, hence,
fTideman(�) = d.

Lastly, Copeland’s rule selects an alternative based on the
number of pairwise majority wins and here breaks the tie be-
tween b and d alphabetically leading to fCopeland(�) = b.

For the sake of completeness, we remark that all rules defined
here are Condorcet extensions and thus suffer from the NSP (Moulin,
1988). Occurrences of the NSP for Black’s, Baldwin’s, and Copeland’s
rule require three alternatives while four alternatives are needed for
MaxiMin as well as Nanson’s and Tideman’s rule.

It is interesting to note that whenever a Condorcet winner exists, no
weak Condorcet extension allows for manipulation by strategic absten-
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tion by a single voter.43 To see this, assume alternative x is the Con-
dorcet winner, i.e., wins in a pairwise majority comparison against
all other alternatives. While some of these strict majority preferences
might turn to indifferences if voter i abstains from the election pro-
cedure, this can only happen for comparisons to alternatives less pre-
ferred than x according to �i. Hence, every alternative strictly more
preferred than x still loses at least the pairwise majority comparison
against x, which remains a weak Condorcet winner. We deduce that
irrespective of other possible weak Condorcet winners and the under-
lying tie-breaking, no alternative preferred to x can be chosen. Of
the rules defined above, MaxiMin and Tideman’s rule are weak Con-
dorcet extensions.44

3.1.2 Preference Models

When analyzing properties of voting rules, it is a common approach
to sample preferences according to some underlying model. A high
amount of sampled preference profiles together with a—usually auto-
mated—evaluation of predefined criteria can yield interesting insights
into, e.g., the expected cardinality of chosen sets for set-valued
voting rules, or, as in this chapter, the frequency of voting paradoxes
like the NSP. Various concepts to model preferences have been intro-
duced over the years; we here informally and very briefly present the
ones employed later on and refer to, e.g., Critchlow et al. (1991) and
Marden (1995) for a detailed discussion. We focus on three parameter-
free models: impartial culture, impartial anonymous culture, and the
spatial model. Furthermore, we consider the urn model and Mallows’
φ.

impartial culture. Impartial culture (IC) is the most basic model IC

where each of the n voters is assigned one out of m! possible prefer-
ence relations uniformly at random. Hence, every possible preference
profile is given identical probability.

impartial anonymous culture. Though using a similar idea, im-
partial anonymous culture (IAC) (Gehrlein and Fishburn, 1976) follows IAC

a slightly different approach selecting each anonymous preference
profile with the same probability. More details on anonymous pro-
files can also be found in Section 3.2.1. Both IC and IAC are often

43 A weak Condorcet extension chooses a weak Condorcet winner whenever one exists.
Since every Condorcet winner automatically is a weak Condorcet winner, we obtain
that every weak Condorcet extension is Condorcet consistent.

44 For both MaxiMin and Tideman’s rule this holds by the observation that a weak
Condorcet winner does not lose any pairwise majority comparison. Black’s rule fails
to be a weak Condorcet extension by definition; a counterexample for Baldwin’s,
Nanson’s, and Copeland’s rule is given by Fishburn (1977).
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criticized for not being very realistic (see, e.g., Tsetlin et al., 2003; Re-
genwetter et al., 2006).

spatial model. For the (two-dimensional) spatial model we samplespatial model

points in the unit square uniformly at random, one for every voter
and alternative each. The proximity to the alternatives then deter-
mines the voters’ preferences; the closer the more preferred.

urn model. The Pólya-Eggenberger urn model (Berg, 1985) bearsurn model

similarities to IC, only individual preferences are not all sampled uni-
formly at random. Intuitively, we draw a preference ranking for the
first voter just as for IC but than add another 10 copies of this very
ranking to the ‘urn’ we draw from. We repeat this procedure for every
ranking assigned to one of the voters, thus making already existing
rankings ever more likely to be selected again.

mallows’ φ . Following Mallows’ model (Mallows, 1957) we firstMallow’s φ

sample a ‘true’ ranking �0. Based on this �0, we can compute the
Kendall-tau distance (Kendall, 1938) of all other preference rankings.
We now sample a ranking for every voter where a ranking is more
likely to be drawn the closer it is to �0 (in terms of Kendall-tau dis-
tance). φ ∈ (0, 1] is a dispersion parameter determining the influence
the distance has: small values of φ put almost all probability on rank-
ings close to �0 while for φ = 1, Mallows’ model coincides with IC.
We set φ = 0.8 to obtain a reasonable variety of preferences and still
be sufficiently different from IC.

The preference models we consider (such as IC, IAC, and Mallows’
model) have also found widespread acceptance for the experimen-
tal analysis of voting rules within the multiagent systems and artifi-
cial intelligence community (see, e.g., Aziz et al., 2013d; Brandt and
Seedig, 2014; Goldsmith et al., 2014; Oren et al., 2015; Brandt et al.,
2016d).

3.2 quantifying the no-show paradox

The goal in this chapter is to quantify the frequency of the NSP, i.e.,
to investigate for how many preference profiles a voter is incentivized
to abstain from an election. In order to achieve this, we employ exact
analysis via Ehrhart theory and experimental analysis via sampled
preference profiles.

3.2.1 Exact Analysis via Ehrhart Theory

The imminent strength of exact analysis is that it gives reliable theo-
retical results. On the downside, precise computation is only feasi-
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ble for very simple preference models and even then only for small
values of m. We focus on IAC and make use of Ehrhart theory.

The general idea to quantify voting paradoxes via IAC has been
around since the formal introduction of this preference model by
Gehrlein and Fishburn (1976).45 Still, a good thirty years were to
pass until the connection to Ehrhart theory (Ehrhart, 1962) was estab-
lished by Lepelley et al. (2008). We refer to Gehrlein and Lepelley
(2011) for a more profound explanation of all details and an overview
of results subsequently achieved.46 The step from three to four alter-
natives in comparison to prior work, which equals a step from six to
24 dimensions, is only possible due to recent advances in computer
algebra systems by De Loera et al. (2012) and Bruns and Söger (2015).

We follow an approach also described by Brandt et al. (2016d), who
study the frequency of two single-profile paradoxes for a series of
Condorcet extensions (Condorcet loser paradox and agenda contrac-
tion paradox). Brandt et al. are, to the best of our knowledge, the first
to obtain analytical results for four alternatives. In a recent paper,
Bruns et al. (2017) also make use of the possibility to analyze situa-
tions withm = 4 and look at the Condorcet efficiency of plurality and
plurality with run-off as well as the structure of majority graphs and
varying Borda paradoxes.

First, note that an anonymous preference profile is completely spe-
cified by the number of voters sharing each of the m! possible pref-
erence rankings on m alternatives. Hence, we can sort all these rank-
ings lexicographically, number them consecutively and so uniquely
represent any anonymous profile by an integer point x in a space of
m! dimensions. We interpret xi as the number of voters of type �i,
i.e., sharing preference ranking �i. For a given number n of voters,
we can easily describe the set of possible anonymous profiles as all
integer points x ∈ Rm! that satisfy

xi > 0 for all 1 6 i 6 m! and∑
16i6m!

xi = n.

This number is known to be
(
m!+n−1
m!−1

)
(see, e.g., Feller, 1966).

Next, we want to count the number of profiles for a fixedmwhere a
manipulation by abstention is possible for at least one voter. We do so
by describing the set of all such profiles using linear (in)equalities, i.e.,
as a polytope Pn.47, 48 Making use of Ehrhart theory (Ehrhart, 1962),
we can determine the number of integer points in Pn and directly

45 See, e.g., Lepelley et al. (1996), Le Breton et al. (2016), and Lepelley et al. (2018).
46 See also, e.g., Wilson and Pritchard (2007), Schürmann (2013), and Le Breton et al.

(2016) for some more recent papers using Ehrhart theory in the context of voting.
47 More precisely, Pn is a dilated polytope depending on n, Pn = nP = {n~x : ~x ∈ P}.
48 We will see that a single polytope seldom suffices and we need to define a vast

number thereof.
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obtain the likelihood of an occurence of the NSP as fraction of the
total number of anonymous profiles.

Ehrhart shows that the number of points in Pn can be found by
so-called Ehrhart- or quasi-polynomials f. Each f is not a single poly-Ehrhart polynomial

nomial but rather a collection of q polynomials fi of degree d such
that f(n) = fi(n) if n ≡ i mod q. q is also named the period of f andperiod

we intuitively have that a larger q signifies that f consists of a greater
number of different polynomials. Also, a larger q generally means
that f is harder to find and imposes less structure upon f(n). Obtain-
ing f is possible via computer programs like LattE (De Loera et al.,
2004) or Normaliz (Bruns et al.). Brandt et al. (2016d) give a more
detailed description of the general methodology.

We continue with a detailed explanation of how to model manipu-
lation instances via polytopes for MaxiMin andm = 4 in Section 3.2.2.
Additional modelings used later on are for Black’s and Copeland’s
rule for m = 3; the respective polytopes can be found in Section 3.2.3
and Section 3.2.4.

3.2.2 Case Study: MaxiMin

For the modeling we need to give linear constraints in terms of voter
types—or equivalently majority margins—that describe polytopes
containing all profiles prone to the NSP. Recall the definition of Maxi-
Min from Section 3.1.1,

fMaxiMin(�) = arg max
x∈A

min
y∈A\{x}

gxy,

and assume fMaxiMin(�) = x ∈ A. For the NSP to occur, two intrinsic
conditions have to be fulfilled:

1. There is a voter i ∈ N such that fMaxiMin(�−i) = y 6= x.

2. For voter i, we have that y �i x.

While for a specific instance of A = {a,b, c,d} and a manipulation
from a to b, constraint 2 only reduces the possible types of
manipulators to twelve,49 constraint 1 is more restrictive in that sense.
We find that somewhat surprisingly only two out of those twelve
types of voters are capable of actually making alternative b the win-
ner when abstaining the election process, namely

�i: c,b,a,d and �j: d,b,a, c.

It can be shown that no instance exists, in which both voter types can
influence the outcome in their favor. For the sake of this case study,
let us focus on �i for the moment.

49 In twelve out of 24 permutations of {a,b, c,d} we have b ranked above a.
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A first analysis shows that for the desired manipulation to be
achievable by i, it is necessary that the highest defeat of a—the win-
ning alternative under MaxiMin—has to be versus d. Similarly, we
obtain that b’s highest defeat must be against c with gad = gbc,50

and any other defeat of b has to be lower by at least two, this being
the only way i can make b the winner instead of a. These consider-
ations give rise to a first set of basic conditions that has to hold for
any manipulation instance from a to b by i, no matter a further case
distinction.51

gad = gbc, gad 6 0,

gab > gad, gba > gad + 2, (basis)

xi > 1

We distinguish between gcd = 0, gcd 6 −1, and gcd > 1.
Case gcd = 0. To achieve that fMaxiMin(�) = a and simultaneously

get a valid manipulation, we have to ensure that c’s and d’s highest
defeat is at least as large as a’s:

gcd = 0, gca 6 gad, gdb 6 gad (A)

Case gcd 6 −1. Regarding c and d, we deduce that just as before,
their corresponding highest defeat has to be at least as large as a’s.
For d that means a defeat versus b, for c it could be either against a,
d, or both. This is represented in the following set of constraints:

gcd 6 −1, gdb 6 gab (B)

gcd 6 gad, gca 6 gad (B1)

gcd 6 gad, gca > gad + 1, gac > gad (B2)

gcd > gad + 1, gca 6 gad (B3)

Case gcd > 1. This case is almost symmetric to the previous one
with reversed arguments for c and d.

gcd > 1, gca 6 gab (C)

gdc 6 gad, gdb 6 gad (C1)

gdc 6 gad, gdb > gad + 1, gbd > gad + 2 (C2)

gdc > gad + 1, gdb 6 gad (C3)

Finally, the total set of profiles admitting a manipulation from a

to b by i can be described by seven polytopes making use of the
constraints developed above. We obtain

50 Theoretically, we only require gad − 1 6 gbc 6 gad. As either all gxy are even or
all gxy are odd, this collapses to gad = gbc.

51 Some inequalities are omitted to remove redundancies when taken together with
later constraints.
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• P1 = (basis) + (A),

• P2 = (basis) + (B) + (B1), P3 = (basis) + (B) + (B2),
P4 = (basis) + (B) + (B3),

• P5 = (basis) + (C) + (C1), P6 = (basis) + (C) + (C2), and
P7 = (basis) + (C) + (C3).52

Since we are interested in not only voter type �i but also �j and
equivalently not only manipulations from a to b but also all differ-
ent combinations, we need to undergo a similar reasoning 24 times.
This amounts to a total of 168 disjoint polytopes to encompass all
profiles prone to the NSP. We remark that even though manipulation
instances are roughly in line for all 24 types of voters, there are no
exact symmetries that allow for reducing the number of polytopes.
This is mostly due to alphabetic—i.e., non-symmetric—tie-breaking
and the required presence of a certain voter type in the electorate.
Both effects diminish as n grows, but discrepancies between different
types of manipulators are significant up to lower three-digit n.53

Even though no exact symmetries exist, it is possible to give all con-
straints in a general form varying based on the manipulating voter’s
type. This allows a computer to easily create all 168 needed poly-
topes.

Assume therefore that the manipulator i has preferences
�i : w, x,y, z with (w, x,y, z) being some permutation of the alterna-
tives A = {a,b, c,d}. Let furthermore u > v denote that u precedes v
in the alphabetical tie-breaking order, u, v ∈ {w, x,y, z}. We have that
voter i can manipulate from y to x only, and the necessary (in)equa-
lities to describe profiles where such a manipulation is possible look
as follows:

gyz =

{
gxw if y > x,

gxw + 2 if x > y,
gyz 6 0,

gyx > gyz, gxy > gxw + 2, (basis)

xi > 1

52 We choose this informal notation for the sake of readability. It is to be understood
in a way that P1 is the polytope described by (in)equalities labelled (basis) as well as
(A). We additionally assume for all polytopes that the sum of voters per type adds
up to n and each type consists of a nonnegative amount of voters.

53 The chance to observe ties decreases as n grows and approaches zero as n goes to
infinity. Hence, were we interested in the limit only, we could ignore the tie-breaking
and save a lot of work. Note, however, that the limit does not offer instructive
insights for the NSP, as we will see in Section 3.3.1.
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gwz = 0, (A)

gwy 6

{
gyz if y > w,

gyz − 1 if w > y,
gzx 6

{
gxw if x > z,

gxw − 1 if z > x

gwz 6 −1, gzx 6

{
gxw if x > z,

gxw − 1 if z > x
(B)

gwy 6

{
gyz if y > w,

gyz − 1 if w > y,
gwz 6

{
gyz if y > w,

gyz − 1 if w > y
(B1)

gwy 6

{
gyz if y > w,

gyz − 1 if w > y,
gwz >

{
gyz + 1 if y > w,

gyz if w > y
(B2)

gwy >

{
gyz + 1 if y > w,

gyz if w > y,
gwz 6

{
gyz if y > w,

gyz − 1 if w > y,
(B3)

gyw > gyz

gwz > 1, gwy 6

{
gyz if y > w,

gyz − 1 if w > y
(C)

gzx 6

{
gxw if x > z,

gxw − 1 if z > x
gzw 6

{
gxw if x > z,

gxw − 1 if z > x
(C1)

gzx 6

{
gxw if x > z,

gxw − 1 if z > x
gzw >

{
gxw + 1 if x > z,

gxw if z > x
(C2)

gzx >

{
gxw + 1 if x > z,

gxw if z > x,
gzw 6

{
gxw if x > z,

gxw − 1 if z > x,
(C3)

gxz > gxw + 1

Reusing previous notation we can easily write down the respective
polytopes using these linear constraints. We obtain

• P1 = (basis) + (A),



40 analyzing the likelihood of the no-show paradox

• P2 = (basis) + (B) + (B1), P3 = (basis) + (B) + (B2),
P4 = (basis) + (B) + (B3),

• P5 = (basis) + (C) + (C1), P6 = (basis) + (C) + (C2), and
P7 = (basis) + (C) + (C3).

Doing so for all 24 types of possible manipulators yields the total
set of polytopes that model all profiles prone to the NSP.54

This approach is substantially more involved than using Ehrhart
theory for other paradoxes, e.g., the Condorcet loser paradox (Brandt
et al., 2016d), mainly because of three reasons.

1. While the Condorcet loser paradox relies on the majority mar-
gins only, an occurence of the NSP demands for a certain type
of voter to be present in the electorate.

2. There are instances where different types of voters present may
each manipulate the outcome by abstaining. Thus, cases where
only a single or multiple voters are able to manipulate have
to be considered separately for obtaining the total number of
profiles that are subject to the NSP. This results in a significant
increase in the number of polytopes required.55

3. Occurrence of the NSP does not only rely on a certain alterna-
tive winning, but also on how that alternative wins, i.e., the cor-
responding majority margins matter. By our modeling, we have
to ensure that though a given alternative wins beforehand, all
margins are exactly such that the manipulator does sway them
in the proper extent to make a more preferred alternative the
winner. Hence, more than a mere ordinal comparison between
raw majority margins is required.

3.2.3 Polytopes for Black’s Rule

For the sake of completeness, we also include the polytopes underly-
ing the Ehrhart polynomials to compute the exact fraction of profiles
admitting a manipulation by abstention for Black’s rule and m = 3.

Note that for three alternatives, the
lexicographically alphabetic order-
ing of voter types is as given on
the right.

%1 %2 %3 %4 %5 %6

a a b b c c

b c a c a b

c b c a b a

A first analysis shows that when n is even, manipulation is only
possible from a Borda winner towards a Condorcet winner. Con-
versely, when n is odd, any possible manipulation necessarily is from

54 Similar to before, we here again additionally assume that the total number of voters
sums up to n and we have a nonnegative amount of voters per voter type.

55 As a matter of fact, this cannot occur for MaxiMin. It is, however, relevant for, e.g.,
Black’s rule.
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a Condorcet winner to a Borda winner. We start with n being even
where we have one polytope per voter type. Under the usual addi-
tional assumption that all xi are nonnegative and sum up to n, these
polytopes describe manipulations from a to b, a to c, b to a, b to c, c
to a, and c to b, in this order for even and odd n both.

gab + gac > gba + gbc, gba > 1, x6 > 1,

gab + gac > gca + gcb, gbc = 0 (P1)

gab + gac > gba + gbc, gca > 1, x4 > 1,

gab + gac > gca + gcb, gcb = 0 (P2)

gba + gbc > gab + gac + 1, gab > 1, x5 > 1,

gba + gbc > gca + gcb, gac = 0 (P3)

gba + gbc > gab + gac + 1, gcb > 1, x2 > 1,

gba + gbc > gca + gcb, gca = 0 (P4)

gca + gcb > gab + gac + 1, gac > 1, x3 > 1,

gca + gcb > gba + gbc + 1, gab = 0 (P5)

gca + gcb > gab + gac + 1, gbc > 1, x1 > 1,

gca + gcb > gba + gbc + 1, gba = 0 (P6)

For these polytopes the inequalities in the left column model that
the required alternative currently is the Borda winner. The (in)equa-
lities in the second column guarantee that a manipulator can make
the desired alternative Condorcet winner by abstaining as well as
that with him being present, there is no Condorcet winner. The last
column only demands presence of the voter type being able to ma-
nipulate.

For odd n, this only changes in so far as the first column now
models that the desired alternative can be made the Borda winner by
abstaining. The second column, on the other hand, describes that
whichever alternative is manipulated away from currently is Con-
dorcet winner, while it will not be so anymore after the manipulation.

gba + gbc > gab + gac + 1, gab > 1, x3 > 1,

gba + gbc > gca + gcb + 1, gac = 1 (P7)
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gca + gcb > gab + gac + 1, gac > 1, x5 > 1,

gca + gcb > gba + gbc + 3, gab = 1 (P8)

gab + gac > gba + gbc + 1, gba > 1, x1 > 1,

gab + gac > gca + gcb + 1, gbc = 1 (P9)

gca + gcb > gab + gac + 3, gbc > 1, x6 > 1,

gca + gcb > gba + gbc + 1, gba = 1 (P10)

gab + gac > gba + gbc + 1, gca > 1, x2 > 1,

gab + gac > gca + gcb + 1, gcb = 1 (P11)

gba + gbc > gab + gac + 3, gcb > 1, x4 > 1,

gba + gbc > gca + gcb + 1, gca = 1 (P12)

The total number of profiles prone to the NSP equals the sum of
integer points contained in P1 to P12.

3.2.4 Polytopes for Copeland’s Rule

For Copeland’s rule and m = 3, all profiles prone to the NSP can be
modeled using four polytopes only.

gba > 2, gac > 1, gcb = 1, x6 > 1 (P1)

gca > 2, gab > 1, gbc = 1, x4 > 1 (P2)

gac > 2, gba > 1, gbc = 0, x1 > 1 (P3)

gab > 1, gca > 1, gbc = 0, x2 > 1 (P4)

Note that once again, we implicitly assume a nonnegative amount
of voters per voter type as well as a total number of n voters.

3.2.5 Experimental Analysis

In contrast to exact analysis, the experimental approach relies on
simulations to grasp the development of different phenomena under
varying conditions. On the upside, this usually allows for results
for more complex problems or a larger scale of parameters, both of
which might be prohibitive for exact calculations. At the same time,
we however face the problem that we need a huge number of simula-
tions per setting to get sound estimates, which in turn often requires
a high-performance computer and a lot of time. Also, there remains



3.3 results and discussion 43

the risk that even a vast amount of simulations fails to capture one
specific, possibly crucial, effect.

Regarding the pivotal question of this section, the frequency of the
NSP for various voting rules, we sample preference profiles for dif-
ferent combinations of n and m using the modeling assumptions ex-
plained in Section 3.1.2.

3.3 results and discussion

We here present our results obtained by both exact analysis and com-
puter simulations.

3.3.1 Results Under IAC

First focus on Copeland’s rule and three alternatives. Our modeling
in Section 3.2.4 allows for an exact analysis of the number of profiles
prone to the NSP. In particular, we compute the following Ehrhart-
polynomial f(n) with period q = 2:

f0(n) = 1/192n4 − 1/48n3 − 1/48n2 + 1/12n

f1(n) = 1/192n4 − 5/96n2 + 3/64

Recall that f(n) = fi(n) if n ≡ i mod q. Consequently, the fraction
of profiles that admit a manipulation by strategic abstention is given
by

f0(n)

(n+55 )

if n is even and

f1(n)

(n+55 )

if n is odd. This frequency of the NSP for Copeland’s rule and m = 3

is plotted in Figure 3.1, together with results obtained by computer
simulations.

With respect to Black’s rule and m = 3, we obtain an Ehrhart-poly-
nomial with slightly larger period q = 6. Once more, we can explicitly
give f(n) which looks as follows:
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Figure 3.1: Fraction of profiles prone to the NSP for Copeland’s rule and
m = 3.

f0(n) = 1/192n4 − 5/48n2

f1(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n− 19/192

f2(n) = 1/192n4 − 5/48n2 + 1/3

f3(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n+ 15/64

f4(n) = 1/192n4 − 5/48n2 + 1/3

f5(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n+ 15/64

The fraction of profiles prone to the NSP for Black’s rule and m = 3

is visualized in Figure 3.2.

Similar connections between analytical and experimental results
can be observed in Figure 3.3. Note that while we are able to ex-
plicitly give the Ehrhart-polynomials for Copeland’s and Black’s rule
and m = 3 here, this is not possible for MaxiMin and m = 4 due to
the polynomial’s size. The corresponding polynomial f(n) has a pe-
riod of q = 55 440, i.e., consists of 55 440 different polynomials. We
deduce that no two points in Figure 3.3 are computed via the same
polynomial, which makes the regularity of the curve even more re-
markable.
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Figure 3.2: Fraction of profiles prone to the NSP for Black’s rule and m = 3.

A couple of points come to mind when closely studying these
graphs. First, we note that the results obtained by simulation almost
perfectly match the exact calculations, which can be seen as strong ev-
idence for the correctness of both. On the one hand, it confirms our
modeling via polytopes, and at the same time highlights that we are
running a sufficiently large amount of simulations. It additionally
stands to reason that this accordance with the exact numbers also
holds for larger m or even different rules, which is most useful for
cases where determining the corresponding Ehrhart-polynomials or
even the modeling via polytopes is infeasible.

We see that for Black’s rule the maximum is attained at 14 and 16

voters with 1.55% of all profiles suffering from the NSP. For
Copeland’s rule the maximum is at 13 voters and 1.63% of all pro-
files, while for MaxiMin and m = 4 it is at 14 voters and a fraction
of 0.55% of profiles. Hence, we can argue that for elections with few
alternatives, the NSP seems to hardly cause a problem, independent
of the number of voters or the voting rule considered. We deem it
striking that the maxima occur at roughly the same number of voters,
while this very number of voters varies between being even or odd.
Also observe that Black’s and Copeland’s rule are more sensitive to
the parity of n than MaxiMin.

Furthermore, we note that the probability for the NSP to occur con-
verges to zero as n goes to∞; a behavior that holds true for all voting
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Figure 3.3: Fraction of profiles prone to the NSP for MaxiMin and m = 4.

rules considered and all fixed m. Intuitively, this is to be expected as
for larger electorates, a single voter’s power to sway the result di-
minishes. This first idea can be confirmed by considering the respec-
tive modeling via polytopes. Each modeling will contain at least one
equality constraint, e.g., in (basis) of fMaxiMin in Section 3.2.2. Conse-
quently, the polytopes describing profiles for which a manipulation
is possible are of dimension at most m! − 1. By Ehrhart (1962), this
means that the number of those profiles can be described by a poly-
nomial of n of degree at most m! − 1. The total number of profiles,
on the other hand, can equivalently be determined via a polynomial
of degree m!. Hence, the fraction of profiles prone to the NSP is
upper-bounded by O(1/n). Following the intuitive argument, similar
behavior is to be expected for all reasonable preference models and
all ‘continuous’ voting rules.56

For m = 4, determining the Ehrhart polynomials for both Black’s
as well as Tideman’s rule proved to be infeasible, even when us-
ing a custom-tailored version of Normaliz and employing a high-
performance cluster.57 Copeland’s rule unfortunately causes prob-
lems even earlier: for four alternatives the modeling via linear

56 While we are not able to give a formal definition, we intuitively mean that a voting
rule is continuous when it does not behave entirely different for varying, e.g., odd
and even, n.

57 For Black’s rule, we find that the polynomial would be of period q ≈ 2.7 · 107 corre-
sponding to a mid two-digit GB file size.



3.3 results and discussion 47

(in)equalities quickly becomes infeasible due to the rule only caring
about unweighted majority comparisons. For all rules,m > 5 appears
to be out of scope for years to come.
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Figure 3.4: Fraction of profiles prone to the NSP for Black’s rule.

We therefore rely on simulations to grasp how often the NSP can
occur for different combinations of n and m up to 50 voters and 30

alternatives. Our results can be found in Figures 3.4 to 3.9. The
following observations can be made.
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Figure 3.5: Fraction of profiles prone to the NSP for Baldwin’s rule.
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Figure 3.6: Fraction of profiles prone to the NSP for Nanson’s rule.
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Figure 3.7: Fraction of profiles prone to the NSP for MaxiMin.

To begin with, the relatively low fraction of profiles prone to the
NSP for Copeland’s rule, Black’s rule, and MaxiMin with a small
number of alternatives increases as m grows. This increase is quite
dramatic for Copeland’s rule and MaxiMin. In particular, for only 20

alternatives, a rough quarter of all profiles admit a manipulation by
abstention for a medium count of voters for both rules—a number
too large to discard the NSP as merely a theoretical problem. Black’s
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Figure 3.8: Fraction of profiles prone to the NSP for Tideman’s rule.

rule, on the other hand, remains stable on a comparatively moderate
level.

Especially when considering Black’s, Tideman’s, and Copeland’s
rule, we see that the parity of n crucially influences the results. How-
ever, the parity of n does not affect the fractions in a consistent way:
higher fractions occur for Black’s and Copeland’s rule when n is even,
in contrast to Tideman’s rule where this happens when n is odd. For
Black’s rule, this is most probably due to the fact that there are more
suitable profiles close to having a Condorcet winner (gxy = 0) than
profiles close to not having one (gxy = 1).58 Considering Copeland’s
rule and an odd number of voters, the score for each alternative is
an integer compared to a finer scale allowing for half points when n
is even. Hence, differences between alternatives are potentially more
distinct for an odd number of voters which we assume makes mani-
pulations harder to achieve. For Tideman’s rule, we currently lack a
convincing explanation for the observed behavior, mostly because it
is hard to intuitively grasp when exactly a preference profile is ma-
nipulable.

Regarding Baldwin’s and Nanson’s rule as well as MaxiMin, the
parity of n seems to have little effect on the numbers. More detailed
analysis shows that at least for MaxiMin this appearance is deceptive:
when manipulating towards an alphabetically preferred alternative,
fractions are higher for even n, while the contrary holds for manip-

58 For Black’s rule, manipulation is only possible either towards or away from a Con-
dorcet winner since Borda’s rule is immune to strategic abstention and manipulation
is impossible from Condorcet winner to Condorcet winner.
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Figure 3.9: Fraction of profiles prone to the NSP for Copeland’s rule.

ulations towards an alphabetically less preferred alternative. In sum,
these two effects approximately cancel each other out.

Felsenthal and Nurmi (2018) argue in favor of Nanson’s rule as it
is—in contrast to the related Baldwin’s rule—not prone to the NSP
for three alternatives. We show that this difference between the two
rules becomes moot for larger numbers of alternatives: the fractions
of profiles allowing for a manipulation are on a roughly identical,
severely high level.59 This emphasizes that even though it seems rea-
sonable at first glance to surmise that a voting rule based on Borda
scores fares better with respect to the NSP, this is not necessarily true.

When examining Figure 3.5, the ridge at n = 3 immediately catches
the observer’s eye.
We conjecture this unique behavior of Baldwin’s rule is
due to preference profiles similar in structure to the one
depicted on the right. In case voter 3 places sufficiently
many alternatives over x, x is going to be eliminated on
the way causing y to eventually be chosen. Then again,
if voter 3 abstains, x is always going to be selected as
long as it beats y in the tie-breaking order. Note that x
and y can be chosen almost freely, all other alternatives
placed virtually arbitrarily, and many profiles only sim-
ilar in structure also work.

1 2 3

x y
...

y x
...

...
...
y

x
...

The flawless smoothness and regularity of Figures 3.4 to 3.9 are
due to 10

6 runs per data point. This large number allows for all 95%

59 Felsenthal and Nurmi (2018) also show that none of the two rules fares strictly better
than the other. Indeed, there are profiles where a manipulation is possible according
to Baldwin’s rule but not using Nanson’s rule and vice versa.
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confidence intervals to be smaller than 0.2%. Our simulations were
conducted on a XeonE5-2697 v3 with 2 GB memory per job and took
35 to 48 hours for each data point. Since there are 1 500 data points per
plot, the total runtime for all six figures easily accumulates to forty
years on a single-processor machine.

3.3.2 Comparing Different Preference Models

In order to get an impression of the frequency of the NSP under
different preference models, we fix the number of alternatives to be
m = 4 or m = 30 and sample 10

6 profiles for increasing n up to
1 000 or 200, respectively.60 Figure 3.10 gives the fraction of profiles
prone to the NSP using either Black’s, Baldwin’s, or Nanson’s rule.
Values for MaxiMin, Tideman’s, and Copeland’s rule are displayed in
Figure 3.11.

A close inspection of these graphs allows for multiple conclusions.
First, we see that in particular Black’s rule shows a severe dependency
on the parity of n. For better illustration, we depict two lines per pref-
erence model to highlight this effect; which line stands for odd and
which for even n is easiest checked using their corresponding point
of intersection with the x-axis, which is either 1, 2, or 3 throughout.
Apart from explanations given earlier, it is not completely clear why
differences are more prominent for some voting rules, why we some-
times see higher percentages for odd n and other times for even n, or
why for some instances there is a large discrepancy for one preference
model but hardly any for another.

IC and IAC are often criticized for being unrealistic and only giv-
ing worst-case estimates (see, e.g., Tsetlin et al., 2003; Regenwetter
et al., 2006). This criticism is generally confirmed by our experi-
ments, which show that the highest fractions of profiles is prone to
the NSP when the sampling is done according to IC or IAC. A notable
exception is Black’s rule for 30 alternatives, where a different effect
prevails: for many alternatives and comparably few voters, situations
in which a Condorcet winner (almost) exists appear less frequently
under IC or IAC than under the other preference models. In absence
thereof, Black’s rule collapses to Borda’s rule, which is immune to
the NSP. Note that were we to conduct a dual experiment with fixed
n and increasing m, the fraction of profiles prone to the NSP using
Black’s rule and IC or IAC would converge to zero for similar reasons.

We moreover see that IC, IAC, and the urn model exhibit identical
behavior for m = 30. The right-hand side of Figure 3.10 and Fig-
ure 3.11 therefore seems to only feature three preference models, even
though all five are depicted. This may be surprising at first but is to

60 For increasing m the computations quickly become very demanding. The values for
m = 30 and n > 99 are determined with 50 000 runs each only. The size of all 95%
confidence intervals is, however, still within 0.5%.
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Figure 3.10: Profiles prone to the NSP for Black’s, Baldwin’s, and Nanson’s
rule, fixed m, and increasing n; two lines per preference model
depending on the parity of n; IC, IAC and the urn model al-
most collapse for m = 30, resulting in a bluish grey line.

be expected since IC and IAC can equivalently be seen as urn models
with parameters 0 and 1, respectively. For 30! ≈ 2.7 · 1032 voter types
and a comparatively small n the difference between parameters 0, 1,
and 10 is simply too small for a visible difference.
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m = 4 Copeland’s rule m = 30
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Figure 3.11: Profiles prone to the NSP for MaxiMin, Tideman’s, and
Copeland’s rule, fixed m, and increasing n; two lines per pref-
erence model depending on the parity of n; IC, IAC and the
urn model almost collapse for m = 30, resulting in a bluish
grey line.

The large conceptual similarities between Baldwin’s and Nanson’s
rule are also reflected in the corresponding charts. Apart from the
peak at n = 3 for Baldwin’s rule, both look almost identical for all
preference models with the small difference being that Nanson’s rule
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m IC IAC spatial urn Mallows

Black
4 3.92

(29)
3.73

(18)
1.62

(15)
2.30

(10)
3.23

(17)

30 5.12
(22)

5.12
(22)

7.70
(17)

5.14
(20)

9.90
(13)

Baldwin
4 3.92

(27)
3.07

(23)
0.40

(15)
0.84

(12)
2.14

(13)

30 35.4(49)
35.4(51)

2.54
(21)

35.7(49)
5.73

(3)

Nanson
4 3.64

(27)
2.76

(24)
0.44

(13)
0.68

(16)
2.20

(14)

30 34.9(51)
34.8(51)

2.38
(21)

34.7(99)
3.40

(12)

MaxiMin
4 1.00

(30)
0.56

(14)
0.14

(3)
0.13

(3)
0.50

(10)

30 28.0(30)
28.0(30)

2.31
(3)

28.0(30)
3.01

(6)

Tideman
4 0.80

(26)
0.67

(5)
0.19

(5)
0.32

(5)
0.62

(3)

30 15.6(51)
15.6(49)

2.42
(7)

15.6(49)
4.12

(3)

Copeland
4 6.96

(29)
5.54

(20)
0.91

(14)
2.07

(13)
4.13

(16)

30 31.2(50)
31.0(50)

4.28
(21)

31.1(50)
6.33

(16)

Table 3.1: Maximal percentage of total profiles prone to the NSP for dif-
ferent combinations of voting rules and preference models with
m = 4 orm = 30; the number of voters n for which the maximum
occurs attached in parentheses; IC, IAC, and the urn model yield
almost identical numbers for m = 30.

appears to feature a slightly lower manipulability. Fewer rounds for
winner determination thus do not seem to come at a cost with respect
to the NSP.

Finally, Copeland’s, Baldwin’s, and Nanson’s rule as well as Maxi-
Min to a lesser extent appear to fare exceptionally bad with respect to
the NSP and IC, IAC, and the urn model. At the same time, none of
these rules exhibits overly conspicuous behavior for the spatial and
Mallows’ model. This suggests that the risk of a possible manipula-
tion is reduced by structural similarities in the individual preferences
compared to a greater likelihood for very diverse rankings. Though
generally in line with expectations, we currently do not have a pro-
found explanation for the magnitude of this effect. For Copeland’s
rule, it is plausible to assume that its particularly bad performance
results from the rule using less information, i.e., Copeland’s rule is
the only majoritarian rule considered here.

The maximal fraction of total profiles prone to the NSP for m = 4,
m = 30, different voting rules, preference models, and varying values
of n is given in Table 3.1. Among other things, we for instance note
that the maxima constantly occur for a higher number of voters for
IC (26 to 51 voters) than for Mallows’ model (3 to 17 voters), a fact
probably due to an increasing (expected) structure under Mallows’
model and larger n. More observations are also given in Section 3.4.
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3.3.3 Empirical Analysis

To get a complete picture, we also analyze the NSP for empirical
data obtained from real-world elections. Unfortunately, such data is
generally relatively rare and imprecise and often only fragmentarily
available. A check of all 315 strict profiles contained in the PrefLib

library (Mattei and Walsh, 2013) for occurrences of the NSP shows
that two profiles admit a manipulation by abstention when Black’s
rule is used, one profile for each Copeland’s, Baldwin’s, and Nan-
son’s rule, and that no manipulation is possible for MaxiMin as well
as Tideman’s rule.61 While this suggests a low susceptibility to the
NSP in real-world elections, much more data would be required to
allow for meaningful conclusions.

3.4 conclusion

While both the Condorcet criterion and immunity to the NSP are
desirable, there is no single-valued voting rule satisfying both con-
ditions (Moulin, 1988). This chapter aims at a better understanding
of this incompatibility: we do know that profiles prone to the NSP
exist, but how likely is it that a randomly chosen preference profile
allows for a manipulation by strategic abstention? For six popular
Condorcet extensions, we pursue this approach using three methods,
namely analytical, experimental, and empirical analysis.

Though exact analysis using Ehrhart theory quickly comes up
against a brick wall due to technical constraints, it underscores the
correctness of our simulations and provides a justification why the
probability for the NSP to occur converges to zero as n grows. Analy-
sis of preference models other than IAC and larger numbers of alter-
natives is possible via computer experiments only. We find that for
a moderate count of alternatives, a higher m comes at the price of a
higher vulnerability to the NSP. Moreover, of the preference models
considered, the spatial model and Mallows’ φ generally perform best
with the notable exception of Black’s rule. Briefly summarized, our
main results are as follows.

• When there are few alternatives, the probability of the NSP is
almost negligible (less than 1% for m = 4, MaxiMin and Tide-
man’s rule, and all considered preference models; less than
4% for Black’s, Baldwin’s, and Nanson’s rule; less than 7% for
Copeland’s rule).

• When there are 30 alternatives and preferences are modeled us-
ing IC, IAC, and the urn model, Black’s rule is least susceptible

61 For instance the profile allowing for a manipulation under Copeland’s rule is im-
mune to the NSP for all other rules. It features 10 alternatives and 30 voters. Bald-
win’s and Nanson’s rule exhibit the NSP for the same profile.
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to the NSP (< 6%), followed by Tideman’s rule (< 16%), Maxi-
Min (< 29%), Copeland’s rule (< 32%) Nanson’s rule (< 35%) ,
and Baldwin’s rule (< 36%).

• For 30 alternatives and the spatial and Mallows’ model, this
ordering is roughly reversed. MaxiMin and Nanson’s rule are
least susceptible (< 4%), followed by Tideman’s rule (< 5%), Bald-
win’s rule (< 6%), Copeland’s rule (< 7%), and Black’s rule
(< 10%).

• The parity of the number of voters significantly influences the
manipulability of Black’s, Tideman’s, and Copeland’s rule.
Black’s and Copeland’s rule are more manipulable for an even
number of voters whereas MaxiMin is more manipulable for an
odd number of voters (under the IAC assumption).

• Whenever analysis via Ehrhart theory is feasible, the results are
perfectly aligned with our simulation results, highlighting the
accuracy of the experimental setup.

• Only four (out of 315) strict preference profiles in the Pref-
Lib database are manipulable by strategic abstention (manip-
ulations only occur for Black’s, Baldwin’s, Nanson’s, and Cope-
land’s rule, but not for MaxiMin and Tideman’s rule).



4
T H E N O -S H O W PA R A D O X F O R S E T-VA L U E D
V OT I N G R U L E S

After having studied the likelihood of the NSP to occur in Chapter 3,
we turn to a different approach. Recall that following Moulin (1988),
every single-valued Condorcet extension is prone to the NSP. However,
this assumption of single-valuedness is often refused for being too re-
strictive and not realistic for many cases, among other things because
it requires some tie-breaking by the rule itself even if all technically
relevant criteria are identical.62 In this spirit, Barberà et al. (2004) ar-
gue that single-valuedness is “questioned because it is formulated in
terms that do not allow for multiple choices of alternatives, not even
in cases where considerations of symmetry make such choices quite
compelling.”

We therefore turn to set-valued voting rules in this section, i.e.,
rules that do not necessarily select single alternatives but possibly
sets of alternatives. As explained in Section 2.4, we first need to de-
fine preference extensions to obtain a variant of participation to work
with; we here rely on two common extensions due to Kelly (1977)
and Fishburn (1972a). Both extensions are motivated and formally
defined in Section 4.1.2.

This chapter is structured as follows: we first specify notation and
concepts used later on in Section 4.1. Next, Section 4.2 briefly intro-
duces the computer-aided approach that led to some of the results
presented and discussed in the following Section 4.3. Lastly, conclud-
ing remarks are given in Section 4.4.

4.1 preliminaries

For this section, we assume voting rules to be set-valued, i.e., to
choose sets of alternatives, and build on notation and concepts in-
troduced in Chapter 2. In particular, we repeatedly deal with ma-
joritarian voting rules. Recall that a voting rule is majoritarian if the
choice set only depends on the majority relation, that is, a majoritar-
ian rule f selects the same set of alternatives for any two preference
profiles % and % ′ as long as %M = % ′M. Whenever we want to talk

62 Single-valuedness is criticized mostly in the context of the Gibbard-Satterthwaite
theorem (Gibbard, 1973; Satterthwaite, 1975) by, e.g., Gärdenfors (1976), Kelly (1977),
Barberà (1977), Feldman (1979b), Bandyopadhyay (1983b), Bandyopadhyay (1983a),
Duggan and Schwartz (2000), Nehring (2000), Ching and Zhou (2002), and Brandt
(2015).
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about majority relations without linking them to a specific preference
profile, we instead focus on majority graphs G. Apart of the lack of
a specified profile, G is treated the same way and subject to the same
operations as %M; we let G−1 be the inverse of G and write G for the
strict part of G just as �M is the strict part of %M.

We proceed by defining two properties as well as a set-valued
voting rule unique to this section before turning towards the two pref-
erence extensions we obtain results for.

4.1.1 Additional Properties and Notation

First, we introduce a very weak variable electorate condition which
requires that a completely indifferent voter does not change the out-
come. A voting rule f satisfies independence of indifferent voters (IIV) ifindependence of

indifferent voters f(%) = f(%+i) for all % ∈ %(A)F(N), where i is a voter who is indif-
ferent between all alternatives, i.e., x ∼i y for all x,y ∈ A. It is easy to
see that every majoritarian rule f satisfies IIV.

We additionally make use of set-monotonicity as originally given
by Brandt (2015), who connects it to Kelly-strategyproofness. There-
fore, for %,% ′ ∈ %(A)N, let % ′ be an f-improvement over % if alterna-f-improvement

tives that are chosen by f in % are not weakened from % to % ′, i.e., for
all x ∈ f(%), y ∈ A, and i ∈ N, x %i y implies x % ′i y, and y % ′i x im-
plies y %i x. A voting rule f satisfies set-monotonicity if f(%) = f(% ′)set-monotonicity

holds whenever % ′ is an f-improvement over %.
In the following, we often relate participation and strategyproof-

ness to Pareto optimality (see Section 2.5). Recall that an alternative
is Pareto optimal if there is no other alternative that Pareto dominates
it. We define the Pareto rule (PO) to be the rule that chooses all ParetoPareto rule

optimal alternatives.

4.1.2 Preference Extensions

To be able to formally reason about participation, we first have to
define how voters compare sets of alternatives. As mentioned in Sec-
tion 2.4, there is no obvious way to extend preferences over single
alternatives to preferences over sets thereof, especially if those sets
overlap. Assuming that out of this choice set one alternative is even-
tually selected, different possible knowledge of the voters about this
tie-breaking mechanism results in different preference extensions (see,
e.g., Gärdenfors, 1979; Ching and Zhou, 2002; Sanver and Zwicker,
2012; Brandt and Brill, 2011; Brandt, 2015; Brandt et al., 2018).

We begin by letting voters have no information whatsoever about
how the final single alternative is selected out of the choice set. Un-
der these circumstances, one set will be preferred to another only if
whichever alternative the tie-breaking mechanism eventually chooses
out of the former is better than everything in the latter. This leads
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to a very natural way of comparing two sets originally due to Kelly
(1977): a voter prefers a set of alternatives X to a second set Y if he
prefers every alternative in X to every alternative in Y. Formally, for
all X, Y ⊆ A, %i ∈ %(A), Kelly’s extension

X %Ki Y if x %i y for all x ∈ X,y ∈ Y.

If, on the other hand, voters know that an alternative is eventually
chosen according to some unknown fixed order of alternatives, e.g.,
the preferences of a chairman, a different extension arises. In partic-
ular, such a fixed tie-breaking mechanism guarantees that if multiple
alternatives are contained in both sets, it is impossible that the most
preferred one of those is chosen in one set and the least preferred one
in the second. This allows a voter to also compare possibly intersect-
ing sets without having to be indifferent in between all alternatives
contained in the intersection. More precisely, a set X is preferred to
another set Y if every alternative in X but not in Y is preferred to
every alternative in the intersection, while every alternative in the in-
tersection is preferred to every alternative in Y but not in X (Fishburn,
1972a). Formally, for all X, Y ⊆ A, %i ∈ %(A), Fishburn’s extension

X %Fi Y if X \ Y %Ki Y and X %Ki Y \X.

We also say that X is Kelly-preferred or Fishburn-preferred to Y
(by i) whenever X %Ki Y or X %Fi Y holds, respectively. The strict
part of both relations is denoted by �Ki and �Fi . Note that by the
definitions, Fishburn’s extension is a refinement of Kelly’s extension.
Hence, %Ki ⊆ %Fi for every %i ∈ %(A), i.e., whenever one set is Kelly-
preferred over another one it is also Fishburn-preferred. For a more
general discussion of how to extend preferences over single alterna-
tives to preferences over sets, we refer to Barberà et al. (2004).63

Example 4.1
For the sake of illustration, consider %i : a,b, c,d and X = {a,b},
Y = {a,b, c}, and Z = {b,d}. Then, X �Fi Y and X �Ki Z. The sets
Y and Z are not comparable with respect to either one of the
two extensions.

Having introduced Kelly’s and Fishburn’s extension, we directly
obtain the two notions of Kelly-participation and Fishburn-participa-
tion as well as the respective counterparts of strategyproofness. In-
tuitively, a voting rule f satisfies Kelly-participation or Fishburn-par- Kelly-participation

ticipation if there is no situation, where by abstaining from the elec- Fishburn-
participationtion process, a voter can obtain a strictly Kelly-preferred or Fishburn-

preferred result, respectively. Both variants are illustrated by the fol-
lowing example.

63 See also, e.g., Gärdenfors (1976), Barberà (1977), Kelly (1977), Duggan and Schwartz
(2000), Barberà et al. (2001), Benoît (2002), Ching and Zhou (2002), and Özyurt and
Sanver (2009).
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Example 4.2
Consider the preference profile % with six voters and four alter-
natives depicted below.

1 2 3, 4 5, 6

c d a b

d b c a

b a d c

a c b d

%

a b

cd

%M

a b

cd

%M−6

The profile % induces the majority relation %M. A well-studied
majoritarian voting rule is the bipartisan set (Laffond et al., 1993;
Dutta and Laslier, 1999). The bipartisan set of % is {a,b, c,d}. If
voter 6 leaves the electorate, we obtain the profile %−6, which in-
duces the majority relation %M−6, whose bipartisan set is {a,b, c}.
Observe that {a,b, c} �F6 {a,b, c,d}, i.e., voter 6 can obtain a pre-
ferred outcome according to Fishburn’s extension by abstain-
ing from the election. Hence, the bipartisan set does not satisfy
Fishburn-participation. However, {a,b, c} �K6 {a,b, c,d} does
not hold and, thus, voter 6 cannot manipulate by abstaining
according to Kelly’s extension. In general, the bipartisan set
satisfies Kelly-participation because it satisfies set-monotonicity
and IIV (see Theorem 4.9).

4.2 computer-aided theorem proving

For some of our results, we are going to make use of the computer-
aided proving methodology described by Brandt and Geist (2016).64

In general, this idea goes back to Tang and Lin (2009) and later Geist
and Endriss (2011), who use the computer-aided method in an auto-
mated search for impossibility theorems. Following Brandt and Geist
(2016)—whose approach we heavily rely on—multiple recent papers
use similar methods to obtain results in different subfields: Brandt
et al. (2017a) tighten the bound on the number of voters required for
the central impossibility of Moulin (1988), Brandl et al. (2018) solve
a challenging open problem in probabilistic voting, and Brandt et al.
(2018) revisit strategyproofness for set-valued voting rules and find
new incompatibilities.

The main idea of the computer-aided approach is to prove state-
ments by encoding a finite instance as a satisfiability problem.65 This
problem can be solved by a computer using a SAT solver and, pro-
vided a (simple) reduction argument, extends to arbitrary domain
sizes. We expand the framework of Brandt and Geist (2016) to also

64 See also Geist (2016) and Geist and Peters (2017) for further details.
65 See, e.g., Biere et al. (2009) for a profound discussion of satisfiability.
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m Brandt and Geist (2016) here

3 49 823 543

4 50 625 ∼ 2.5 · 10
49

5 ∼ 7.9 · 10
17 ∼ 9.4 · 10

867

6 ∼ 5.8 · 10
100 ∼ 6.8 · 10

38 649

Table 4.1: Number of different majoritarian set-valued voting rules; while
Brandt and Geist (2016) could assume an odd number of voters
with strict preferences, participation requires us to deal with vari-
able electorates, and therefore weak majority relations.

cater for indifferences in the majority relations, which is an important
requirement for being able to deal with the notion of participation: if
a voter with at least one strict preference abstains from the election,
the corresponding majority relation might already contain indiffer-
ences.

Note that the introduction of majority ties significantly increases
the size of the search space (see Table 4.1), which makes any type of
exhaustive search even less feasible. Apart from being able to treat
such large search spaces, another major advantage of the computer-
aided approach is that many similar conjectures and hypotheses (here,
e.g., statements about other preference extensions) can be checked
quickly using the same framework.

In the coming subsections, we are going to explain our extension
and some core features of the computer-aided method; for details of
the original approach, however, we refer to Brandt and Geist (2016).

4.2.1 Encoding Participation

At the core of the computer-aided approach lies an encoding of the
problem to be solved as a SAT instance. For this, all axioms involved
need to be stated in propositional logic. We take over the formaliza-
tion of the optimized encoding by Brandt and Geist (2016), which con-
tains the following relevant axioms: functionality of the choice function,
the orbit condition, and Pareto optimality. Pareto optimality is encoded
as being a refinement of the uncovered set.66 What remains is to en-
code the notion of participation. While this encoding turns out to be
similar to the one of strategyproofness defined by Brandt and Geist
(2016), it is more complex and not straightforward. In particular, it re-
quires a novel condition that is equivalent to participation for majori-
tarian voting rules, which we are going to call majority-participation.

We are going to identify preference profiles with their correspond-
ing majority relations, i.e., for majoritarian voting rules f, we often
also write f(G) instead of f(%) whenever G = %M.

66 Brandt et al. (2016c) show that for every alternative not contained in the uncovered
set, there exists a preference profile where this alternative is Pareto dominated.
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A majoritarian voting rule f is Fishburn-majority-manipulable by strate-
gic abstention if there exist majority graphs G, G ′ on A and a prefer-
ence relation %i ∈ %(A) such that f(G ′) �Fi f(G), with

G∩G ′−1 = ∅, (1)

(G \G ′)∪ (G ′−1 \G−1) ⊆ �i, and (2)

(G \G)∩ (G ′ \G ′) ⊆ ∼i. (3)

If the voters’ preferences are required to be strict, it additionally has
to hold that either G or G ′ is antisymmetric. A majoritarian vot-
ing rule f satisfies Fishburn-majority-participation if it is not Fishburn-Fishburn-majority-

participation majority-manipulable by strategic abstention.
Conditions (1) to (3) can intuitively be phrased as follows: (1) pre-

scribes that no strict relationship may be reversed between G and G ′.
(2) requires that %i is in line with the changes from G to G ′, and fi-
nally (3) means that majority ties that occur in both majority graphs
must be reflected by an indifference in %i.

In the following lemma, we show that for majoritarian voting rules,
the condition of Fishburn-majority-manipulability corresponds to an
abstaining voter with preferences %i who thereby obtains a preferred
outcome.67

Lemma 4.3
A majoritarian voting rule satisfies Fishburn-participation if and
only if it satisfies Fishburn-majority-participation.

Proof. We first provide a short outline of the proof. To begin with, we
show that for every preference profile % that allows for a Fishburn-
manipulation by abstention by voter i, the two majority relations %M

and %M−i together with %i satisfy all required conditions. In return,
whenever we have two majority graphs G, G ′ and a preference rela-
tion %i, all with the properties stated in the definition of Fishburn-
majority-participation, we can assign integer majority margins to all
pairs of alternatives and, by Debord (1987), use these to determine
a preference profile % ′ that induces the majority graph G ′. Together
with % = % ′+i, we obtain % ′M = G ′, %M = G and thus f(% ′) �Fi f(%)

for majoritarian voting rules f.
In more detail, we begin by showing that if a majoritarian voting

rule violates Fishburn-participation, then it also violates Fishburn-
majority-participation. Therefore, let f be a majoritarian voting rule
such that there exists some set of voters N, n > 2, set of alternatives
A, preference profile % ∈ %(A)N, and voter i ∈ N for whom it holds
that f(%−i) �Fi f(%), i.e., there is an instance where i can strategically
manipulate by abstaining. Let furthermore G = %M and G ′ = %M−i.

67 Note that both the definition of majority-participation and Lemma 4.3 are indepen-
dent of a specific preference extension, and thus also applicable to, e.g., Kelly’s
extension.
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First note that we directly have that f(G ′) �Fi f(G). Now, con-
tinue with conditions (1) to (3) as given in the definition of Fishburn-
majority-participation. Since only one voter leaves the electorate when
going from % to %−i and everything else remains unchanged, we can-
not have a directed edge from x to y in G and a directed edge from
y to x in G ′ for any x,y ∈ A, i.e., no edges in the strict part of the
majority graphs can be reversed. Hence, G∩G ′−1 = ∅.

Next, we have that if an alternative is preferred over another alter-
native by a weak majority in % and not preferred anymore in %−i,
than i must prefer the former to the latter. Conversely, given one
alternative is preferred over another alternative by a majority in %−i

but not in %, i has to prefer the latter to the former. We together
obtain (G \G ′)∪ (G ′−1 \G−1) ⊆ �i.

Additionally, for every majority comparison that was balanced at
an indifference in both % and %−i, we necessarily also have an indif-
ference in i’s preferences: (G \G)∩ (G ′ \G ′) ⊆ ∼i.

Finally, note that either n or n− 1 is odd, so, assuming strict in-
dividual preferences, we have that either G or G ′ does not contain
majority indifferences, i.e., is antisymmetric.

We continue with the reverse direction and show that if f vio-
lates Fishburn-majority-participation, then it also violates Fishburn-
participation. To this end, let f be a majoritarian voting rule, G and G ′

be two majority graphs (on some set of alternatives A), %i ∈ %(A) an
individual preference ranking such that f(G ′) �Fi f(G), and let (1) to
(3) as given in the definition of Fishburn-majority-participation hold.
Concerning individual preferences, we start with the general case.

We begin with G ′ and assign margins to all majority comparisons
(x,y) ∈ G ′ such that

w(x,y) =

{
1 if (x,y) /∈ G, and

3 if (x,y) ∈ G.

If (x,y), (y, x) ∈ G ′ we set w(x,y) = w(y, x) = 0. Employing a result
by Debord (1987), it is possible to construct a preference profile % ′

(for some electorate N ′) in a way so that % ′M = G ′ and the majo-
rity margins are according to w. Define % = % ′+i (and consequently
N = N ′ ∪ {i}). We now show that %M = G, or, equivalently, that all
changes when going from G ′ to G are solely due to i joining the
electorate while at the same time nothing else is altered.

Therefore note that for every pair of alternatives x,y ∈ A, one of
the following cases—or its neutral equivalent—applies:

1. (x,y) ∈ G ∩G ′: In this case w(x,y) = 3 and i’s preferences do
not affect the majority comparison.

2. (x,y) ∈ G, (y, x) ∈ G ′: This case is not possible due to (1) in the
definition of Fishburn-majority-participation.
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3. (x,y) ∈ G \G, (x,y) ∈ G ′: We here have w(x,y) = 1 and by (2)
above we know that y �i x, i.e., including i indeed causes the
majority comparison to change in the required way.

4. (x,y) ∈ G, (x,y) ∈ G ′ \G ′: By (2) above we know that x �i y
and hence adding i causes the majority indifference in G ′ to
sway in favor of x.

5. (x,y) ∈ G \G, (x,y) ∈ G ′ \G ′: By (3) above this means that
x ∼i y, thus i does not affect the majority comparison and it
remains identical.

Consequently, %M = G and we directly deduce that f(%−i) �Fi f(%),
i.e., based on a Fishburn-majority-manipulation, we have constructed
a Fishburn-manipulation and f violates Fishburn-participation.

In case voters’ preferences are required to be strict, minor details
of the proof change. First note that by the definition of Fishburn-
majority-participation, either G or G ′ has to be antisymmetric in this
case. If G is antisymmetric, G ′ cannot be so and we have to slightly
modify our margin function for G ′ and instead use w(x,y) = 2 for all
(x,y) ∈ G ′. This assures that the parity of all majority comparisons
is even and a corresponding preference profile consisting of strict
preferences only exists. The above case distinction still applies in so
far as only the first, second, and fourth case are still relevant, the third
and fifth are ruled out by antisymmetry.

Next, if G ′ is antisymmetric, G cannot be. Using the original
weighting function guarantees odd parity for all majority compar-
isons and hence that we can find a preference profile consisting of
strict preferences. Once more, the case distinction applies.

All in all, we have that every Fishburn-manipulation constitutes a
Fishburn-majority-manipulation with the required properties regard-
ing the majority relations and given a Fishburn-majority-manipulation
exists, it is possible to construct a Fishburn-manipulation. This fin-
ishes the proof.

Fishburn-majority-participation can then be encoded in proposi-
tional logic (with variables f%M,X representing f(%M) = X) as the
following simple transformation shows:

¬
(
f(% ′M) �Fi f(%

M)
)
≡

∧
Y�FiX

(¬f%M,X ∨¬f%M,Y)

for all majority relations %M, % ′M and preference relations %i sat-
isfying conditions (1) to (3) in the definition of Fishburn-majority-
participation.

Apart from the additional axioms, extending the framework of
Brandt and Geist (2016) to participation and weak individual pref-
erences also causes some additional (partially technical) challenges,
such as:
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• Search space. The size of the search space grows significantly
with the introduction of weak majority relations (see Table 4.1).
This larger search space can only be managed by an optimized
encoding based on identifying isomorphic graphs (we do this
via canonical representations).68

• More complex data structures. This is more of a technical chal-
lenge to extend all data structures such that they can handle
weak majority relations in addition to strict ones.

4.2.2 Proof Extraction

A very interesting feature of the approach by Brandt and Geist (2016)
is the possibility to extract human-readable proofs from an unsatisfi-
ability result by the SAT solver. This is done by computing a minimal
unsatisfiable set, an inclusion-minimal set of clauses that is still un-
satisfiable.69 This minimal unsatisfiable set can then, assisted by our
encoder/decoder program, be read and transformed into a standard
human-readable proof. Different proofs can be found by varying the
extractor for the minimal unsatisfiable set or by encoding the problem
for different subdomains, such as neighborhoods of a set of profiles
or randomly sampled subdomains, respectively. We refer to Brandt
and Geist (2016) and Geist (2016) for a more detailed description of
the technique of proof extraction.

4.3 results and discussion

In general, participation and strategyproofness are not logically re-
lated. However, extending an observation by Brandt (2015), it can
be shown that strategyproofness implies participation under certain
conditions.
Lemma 4.4

Consider an arbitrary preference extension. Every voting rule
that satisfies IIV and strategyproofness satisfies participation.
When preferences are strict, every majoritarian voting rule that
satisfies strategyproofness satisfies participation.

Proof. We show both statements for Kelly’s extension. The same argu-
ment works for any other preference extension, including Fishburn’s.

For the first statement, let f be a set-valued voting rule that satis-
fies IIV and Kelly-strategyproofness. Assume for contradiction that
f is Kelly-manipulable by strategic abstention, i.e., there is a prefer-
ence profile % and a voter i such that f(%−i) �Ki f(%). Let % ′ be a

68 Without this optimization, only domains of up to four alternatives can be solved
within a reasonable time frame.

69 We used PicoMUS, which is part of the PicoSAT distribution (Biere, 2008).
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preference profile such that % ′j = %j for all j 6= i, and % ′i the prefer-
ence relation that expresses indifference between all alternatives, i.e.,
x ∼ ′i y for all x,y ∈ A. Then, since f satisfies IIV,

f(% ′) = f(%−i) �Ki f(%),

i.e., i can manipulate in % by reporting % ′i instead of %i, which con-
tradicts Kelly-strategyproofness of f.

For the second statement, let f be a majoritarian voting rule that
satisfies Kelly-strategyproofness. Assume for contradiction that f is
Kelly-manipulable by strategic abstention, i.e., there is a preference
profile % and a voter i such that f(%−i) �Ki f(%). Let 2% be a pref-
erence profile that consists of two copies of each preference relation
in %, i.e., for every (i,%i) ∈ %, there are (i1,%i1), (i2,%i2) ∈ 2% such
that %i = %i1 = %i2 . Note that % and 2% have the same majority
relation. 2%−i is defined analogously.

We define a preference profile 2% ′ such that 2% ′j = 2%j for all j 6= i1
and 2% ′i1 = %−1

i1
, where %−1

i1
denotes the inverse of %i1 , i.e., for all

x,y ∈ A, x %−1
i1
y if and only if y %i1 x. Intuitively, 2% ′ is thus the

same as 2% but for the preferences of voter i1, which are reversed.
In terms of the majority relation of 2% ′, we thus have that i1 and
i2 cancel each other out, i.e., do not have an effect on the majority
relation. Consequently, the majority relations of 2% ′ and 2%−i are
identical. Then, since f is majoritarian,

f(2% ′) = f(2%−i) = f(%−i) �Ki f(%) = f(2%),

i.e., i1 can manipulate in 2% by reporting %−1
i1

. This contradicts Kelly-
strategyproofness of f. Note that the proof of the second statement
does not require indifferences to be possible within individual prefer-
ences.

As a consequence of Lemma 4.4, some positive results for Kelly-
strategyproofness and Fishburn-strategyproofness carry over to par-
ticipation.70 We will complement these results by impossibility theo-
rems for Fishburn-participation and a positive result for Kelly-partici-
pation, which specifically does not hold for Kelly-strategyproofness.

4.3.1 Fishburn-Participation

It turns out that Pareto optimality is incompatible with Fishburn-
participation in majoritarian voting settings. The corresponding The-
orems 4.7 and 4.8 and their proofs were obtained using the computer-
aided method laid out in Section 4.2.71 In order to simplify the origi-
nal proofs, which were found by the computer, we first state a lemma

70 See Table 4.2 in Section 4.4 for more details.
71 A proof for Theorem 4.7 was first obtained manually. A shorter and more elegant

variant is due to the computer-aided method, though.
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that offers further insights into the possible choices of majoritarian
voting rules that satisfy Fishburn-participation and Pareto optimal-
ity.

To state Lemma 4.5, we introduce some additional notation: an al-
ternative x (McKelvey) covers an alternative y if x is at least as good
as y compared to every other alternative (McKelvey, 1986). Formally,
given a majority relation %M, x covers y if x �M y and, for all z ∈ A, covering relation

both y %M z implies x %M z, and z %M x implies z %M y. The uncov-
ered set of %M, denoted UC(%M), is the set of all alternatives that are uncovered set

not covered by any other alternative. We inductively define UCk(%M)

as the repeated application of UC, i.e., UC1(%M) = UC(%M) and

UCk(%M) = UC(%M|UCk−1(%M))

for k > 1 where %M|X means the majority relation restricted to alter-
natives contained in X only. Then, the iterated uncovered set is defined iterated uncovered

setby

UC∞(%M) =
⋂
k>1

UCk(%M).

Both UC and UC∞ are illustrated in Example 4.6 after the following
Lemma 4.5. By definition, UC and UC∞ are majoritarian voting rules.

Brandt et al. (2016c) have proven that every majoritarian and Pareto
optimal voting rule selects a subset of the (McKelvey) uncovered
set. We show that a voting rule that additionally satisfies Fishburn-
participation furthermore only depends on the majority relation be-
tween alternatives in the iterated uncovered set and only selects alter-
natives within the iterated uncovered set.72

Lemma 4.5
Let f be a majoritarian and Pareto optimal set-valued voting
rule that satisfies Fishburn-participation. Let %,% ′ ∈ %(A)F(N)

be preferences profiles such that %M|UC∞(%M) = % ′M|UC∞(% ′M).
Then

f(%) ⊆ UC∞(%M)

and if %M and % ′M additionally are antisymmetric, we have
that

f(%) = f(% ′).

Proof. We begin the proof by showing that f(%) ⊆ UC∞(%M). Let f be
a majoritarian and Pareto optimal voting rule that satisfies Fishburn-
participation, N ∈ F(N) a set of voters, % ∈ %(A)N a preference pro-
file and %M the majority relation of %. We prove inductively that
f(%) ⊆ UCk(%M) for all k ∈N.

72 Lemma 4.5 can be strengthened in various respects and also holds for all other
preference extensions satisfying some mild conditions as well as probabilisitic voting
rules (see Lemma 5.12).



68 the no-show paradox for set-valued voting rules

First, let k = 1. Brandt et al. (2016c) have shown that if an alter-
native x is not in the McKelvey uncovered set UC(%M), it is poten-
tially Pareto dominated, i.e., there is a preference profile % ′ such that
%M = % ′M and x is Pareto dominated in % ′. Hence, x /∈ f(% ′) and
as well x /∈ f(%), since f is majoritarian and Pareto optimal.

Now let k > 2. By induction, f(%) ⊆ UCk−1(%M). If we have
that UCk−1(%M) = UCk(%M), there is nothing left to show. Hence,
we consider the remaining case, i.e., UCk(%M) ( UCk−1(%M). By
Debord (1987), we can find a preference profile % ′ ∈ %(A)N

′
such

that % ′M = %M and

|gxy(%
′)|

{
6 1 for all x ∈ UCk(%M),y ∈ A \ UCk−1(%M), and

> 3 otherwise.

This intuitively means that one or two joining voters can only af-
fect majority comparisons in between alternatives x and y where
x ∈ UCk(%M) and y ∈ A \ UCk−1(%M). Specially note that if two
voters j, j ′ with x �j y and x �j ′ y for all such x,y join the electorate,
we have that every alternative in UCk(%M) is majority-preferred over
every alternative in A \ UCk−1(%M).

Let %i be a preference relation such that x %i y for all alternatives
x ∈ UCk(% ′M) and y ∈ A \ UCk−1(% ′M). Clearly,

UCk−1(% ′M+i ) ⊆ UCk−1(% ′M)

as nothing covered before can become uncovered.
If f(% ′) 6= f(% ′+i), we can find some %j such that x �j y for all

x ∈ UCk(% ′M) and y ∈ A \ UCk−1(% ′M) and f(% ′) �Fj f(% ′+j), which
contradicts Fishburn-participation. Thus, f(% ′) = f(% ′+i). With the
same reasoning, we can find %j ′ such that x �j ′ y for all alternatives
x ∈ UCk(% ′M) and y ∈ A \ UCk−1(% ′M) and

f(% ′+j,j ′) = f(%
′
+j) = f(%

′).

Using a result by Brandt et al. (2016c) again, Pareto optimality of
f directly implies that f(% ′+j,j ′) ⊆ UC(%M+j,j ′). By definition of % ′, %j
and %j ′ , we have that UC(% ′M+j,j ′) = UCk(% ′M). Hence,

f(%) = f(% ′) = f(% ′+j,j ′) ⊆ UC(% ′M+j,j ′) = UCk(% ′M) = UCk(%M),

which completes the first part of the proof.
Next, let f be as above and % and % ′ two preference profiles on

some agenda A such that

%M|UC∞(%M) = % ′M|UC∞(% ′M).

Suppose for contradiction that f(%) 6= f(% ′). Since f is majoritarian,
define without loss of generality for %M majority margins |gxy| suit-
ably small if (x,y) ∈ �M and (x,y) /∈ � ′M, and |gxy| sufficiently large
otherwise.73

73 Since %M and % ′M are antisymmetric we obviously have gxy 6= 0 for all x,y ∈ A.
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We successively include k voters i1, . . . , ik into the corresponding
electorate, all with individual preferences such that all alternatives
in UC∞(% ′M) are adjacent in %ij . The placement of all further al-
ternatives is to be of the way that %M

{+i1,...,ik}
= % ′M, yielding that

f(%{+i1,...,ik}) 6= f(%). This is possible as we assumed the weights of
all edges that have to be changed to be suitably small. Since the or-
dering of alternatives within UC∞(% ′M) does not affect the majority
relation due to sufficiently large edge weights, we are able to arrange
them on the way such that x �ij y �ij z for all

x ∈ f(%{+i1,...,ij−1}) \ f(%{+i1,...,ij}),

y ∈ f(%{+i1,...,ij−1})∩ f(%{+i1,...,ij}), and

z ∈ UC∞(%M) \ f(%{+i1,...,ij−1}),

1 6 j 6 k. Intuitively, this means that everything that was in the
choice set before ij joined the electorate but is not contained anymore,
is preferred to everything that still is in the choice set, is preferred to
everything that is possibly chosen now, but was not chosen before.
Thus, every ij prefers what was chosen without him to what is cho-
sen including him.

Hence, for at least one voter ij, 1 6 j 6 k, it has to hold that

f(%{+i1,...,ij−1}) 6= f(%{+i1,...,ij})

and by definition of this voter’s preferences

f(%{+i1,...,ij−1}) �
F
ij
f(%{+i1,...,ij}).

This contradicts Fishburn-participation and finishes the proof.

The following brief example illustrates an application of Lemma 4.5.

Example 4.6
Let % be a preference profile on A = {a,b, c,d, e} such that %M

is as depicted below. We have that UC(%M) = {a,b,d, e} and
UC2(%M) = UC∞(%M) = {a,b,d}. For all majoritarian and Pa-
reto optimal voting rules f satisfying Fishburn-participation,
Lemma 4.5 gives that f(%) ⊆ {a,b,d}.
Also, the choice set has to be identical to
the one of any other profile with identically
structured iterated uncovered set, e.g., a pro-
file % ′ where the iterated uncovered set is a
completely symmetric three-cycle on {a,b,d}.
Thus, we even have f(%) = {a,b,d} due to
neutrality. Similar considerations are used
repeatedly in the proofs of Theorem 4.7 and
Theorem 4.8.

a b

c

d

e

%M
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Now, let us turn to our impossibility theorems. The computer
found these impossibilities even without using Lemma 4.5. However,
the formalization of the lemma allowed the SAT solver to find smaller
proofs and makes the human-readable proofs more intuitive.
Theorem 4.7

There is no majoritarian and Pareto optimal set-valued voting
rule that satisfies Fishburn-participation if m > 4 and n > 6.

Proof. For this proof, we use an anonymous representation of pref-
erence profiles for reasons of simplicity and thus only denote how
many voters share a preference ranking instead of individual identi-
ties.

Let f be a majoritarian and Pareto optimal voting rule satisfying
Fishburn-participation. Note that majoritarianism implies anonymi-
ty and neutrality. We first prove the statement for A = {a,b, c,d}
and reason about the outcome of f for some specific majority graphs.
Throughout this proof, we make extensive use of Lemma 4.3, which
allows us to apply Fishburn-majority-participation instead of regular
Fishburn-participation. To this end, we also slightly abuse notation
and write G+i meaning %M+i if G = %M.

Intuitively, the proof strategy is to alter the majority graphs G, G ′,
and G ′′ as depicted below by letting varying voters join some under-
lying electorate. This excludes certain choices of f as a voting rule (by
an application of Fishburn-majority-participation), until we reach a
contradiction. For each step, i.e., each time an additional voter alters
one of the majority graphs, we provide a suitable electorate induc-
ing G, G ′, and G ′′, respectively. These electorates vary based on the
joining voter’s preferences and on which majority comparisons either
have to or must not be changed.

Consider for instance G, that can be altered to G+1 by a voter with
preferences %1 : {a,b, c},d. For this to be possible, we need an un-
derlying electorate where d has to be majority-preferred over b by a
margin of exactly one, while it has to be preferred over a by a margin
of at least two. These constraints make the construction of suitable
electorates more demanding with respect to the number of voters
needed compared to the case where only the simple majority relation
is of relevance. In the figures depicting the strict part of the majority
graphs, we highlight alternatives that have to be chosen by f with a
thick border.
First consider G as depicted on the right. In the fol-
lowing, arguments using the additional voter’s prefer-
ences as well as which effects him joining has on the
set of possibly chosen alternatives are given on the left,
while suitable electorates inducing G together with the
changed majority graph are given on the right.

a b

cd

G

Whenever an electorate works for multiple cases, they are grouped in
a single paragraph with the preference profile next to it.



4.3 results and discussion 71

Adding a voter with preferences
%1 : {a,b, c},d yields G+1 where, due to
symmetry, f(G+1) = {a,b, c,d}. As f satis-
fies Fishburn-participation, nothing that is
strictly preferred to {a,b, c,d} according to
%F1 can be chosen in G. Thus, d ∈ f(G).
Adding another voter with %1 ′ : b, {a, c,d}
also leads to majority graph G+1. Hence,
f(G) 6= {b,d}, {a,b,d}, {b, c,d}.

1 1 1 1

a b c d

b, c,d c d a

d a b

a b c

a b

cd

G+1

If G is altered to G+2 by adding a voter with
%2 : {b,d}, c,a, we get f(G+2) = {b, c,d}, by
the fact that a is covered by d together with
neutrality. Therefore, f(G) 6= {d}, {c,d}. Note
that here n = 5 is the minimal number of
other voters needed to construct a suitable
preference profile.
Adding a voter with %3 : {a,b,d}, c leads to
G+3, for which we have f(G+3) = {a, c,d}
by the fact that b is covered by a together
with neutrality. We correspondingly deduce
f(G) 6= {a,d}, {a,b, c,d}. Hence, we conclude
that f(G) = {a, c,d}.

1 1 1 1 1

a a, c b c d

b d c d a

c b d a b

d a b c

a b

cd

G+2

a b

cd

G+3

Now consider G ′ as shown on the right. Neutrality
implies that f(G ′) contains either neither or both of a
and b.

a b

cd

G ′

Adding a voter with preferences
% ′1 : c,a,b,d changes G ′ to G ′+1,
where {a,b, c,d} is selected. Thus,
f(G ′) 6= {c}, {a,b, c}.

1 2 1 1

a b d d

c c a a,b
d d b c

b a c

a b

cd

G ′+1

Additionally, a voter with
% ′2 : {c,d},a,b alters G ′ to G ′+2.
Hence, f(G ′) 6= {d}, {c,d}.

1 1 1 1 1

a a,b b d d

c c c a b

d d d b a

b a c c

a b

cd

G ′+2

Adding a voter with % ′3 : {b, c},a,d
changes G ′ to G ′+3. G ′+3
is isomorphic to G, which im-
plies f(G ′+3) = {a,b,d}. Thus,
f(G ′) 6= {a,b}, {a,b, c,d}.

1 1 1 2

a a c d

b c d b

c d a,b a

d b c

a b

cd

G ′+3
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Putting everything together, we deduce that f(G ′) = {a,b,d}.

Finally, considerG ′′ as depicted on the right. Neutrality
implies that f(G ′′) contains either neither or both of b
and c.

a b

cd

G ′′
Adding a voter with % ′′1 : a, {b,d}, c
changes G ′′ to G ′′+1. Analogously
to G+2, f(G ′′+1) = {a,b,d}. Therefore,
f(G ′′) 6= {a,d}.
Adding a voter with preferences
% ′′2 : c, {b,d},a alters G ′′ to G ′′+2. Al-
ternative d is the Condorcet winner in
G ′′+2, which implies that f(G ′′+2) = {d}

because d covers a, b, and c. Hence,
f(G ′′) 6= {b, c}, {b, c,d}.
Both a voter with % ′′3 : a,d, {b, c} as
well as with % ′′3 ′ : {a,b, c},d can alter
G ′′ to G ′′+3, which is isomorphic to G ′.
Thus, f(G ′′+3) = {b, c,d}. This implies
that f(G ′′) 6= {d}, {a,b, c,d}, otherwise
a voter with % ′′3 or % ′′3 ′ , respectively,
could manipulate.

1 1 1 1

b c d d

a a b c

d d c b

c b a a

a b

cd

G ′′+1

a b

cd

G ′′+2

a b

cd

G ′′+3

A voter with % ′′4 : a,b, c,d changes
G ′′ to G ′′+4. Neutrality implies that
f(G ′′+4) = {a,b, c,d}. This gives that
f(G ′′) 6= {a}, {a,b, c}.

1 1 1 1

a,b c d d

c,d a b d

d c b

b a a

a b

cd

G ′′+4

Consequently, if Fishburn-participation is to be respected, f cannot
choose anything from G ′′, a contradiction to f being a proper voting
rule.

Now let m > 5. It follows from Lemma 4.5 that the choice of f does
not depend on covered alternatives. Hence, the statement follows
by extending the majority graphs depicted above to A such that all
alternatives but a, b, c, and d are covered (for instance, by adding
Condorcet losers only).

We could verify with our computer-aided approach that this im-
possibility still holds for strict preferences when there are at least five
alternatives and seven voters.
Theorem 4.8

There is no majoritarian and Pareto optimal set-valued voting
rule that satisfies Fishburn-participation if m > 5 and n > 7,
even when preferences are strict.

Proof. For this proof, we use an anonymous representation of pref-
erence profiles for reasons of simplicity and thus only denote how
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many voters share a preference ranking instead of individual identi-
ties.

Let f be a majoritarian and Pareto optimal voting rule satisfying
Fishburn-participation and note, just as before, that majoritarianness
implies anonymity and neutrality. We first prove the statement for
A = {a,b, c,d, e} and reason about the outcome of f for some spe-
cific majority graphs. Throughout this proof, we again make exten-
sive use of Lemma 4.3, which allows us to apply Fishburn-majority-
participation instead of regular Fishburn-participation. Intuitively,
the basic proof strategy is similar to the proof of Theorem 4.7, due
to interdependencies however more intricate.

Briefly summarized, we focus on G1 as given
on the right—essentially a three-cycle as compo-
nent of another three-cycle. By neutrality we
know that f has to select either all of c,d, e or
none of them, i.e., there are only seven pos-
sible subsets of A that f can choose in G1:
{a}, {b}, {c,d, e}, {a,b}, {a, c,d, e}, {b, c,d, e} or A.

a b

c

d

e

G1

Using several auxiliary majority graphs, we successively show that
if f selects {b} or {a,b}, nothing can be chosen in G2, if f selects
{a, c,d, e} or A, nothing can be chosen in G3, if f selects {a}, nothing
can be chosen in G4 and finally if f chooses {c,d, e} or {b, c,d, e}, noth-
ing can be chosen in G5. Thus, whatever f selects in G1, one of the
other four majority graphs is left without a possible choice set, a con-
tradiction.

To begin with, consider the
majority graph G2 as depicted
on the right together with a
preference profile inducing G2.
Similar to before, we now let
different voters join this elec-
torate and examine which con-
clusions they allow with re-
spect to f(G2).

1 1 1 2 1

b b c d e

c e a a a

d c b b b

e d d e c

a a e a d

a b

c

d

e

G2

First, assume a voter with preferences
%21 : e,b,a,d, c joins the electorate and conse-
quently alters G2 to G2+1. Here, we have that
f(G2+1) = {a,b,d} according to Lemma 4.5. As
nothing preferred to {a,b,d} can be selected by f in
G2, we obtain f(G2) 6= {b}, {a,b}.

a b

c

d

e

G2+1
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If, on the other hand, either a voter with prefer-
ences %22 : d, c, e,b,a or a voter with preferences
%22 ′ : d, c, e,a,b joins the electorate, G2 is changed to
G2+2, which is equivalent to G1. Suppose for the fol-
lowing arguments that f chooses {b} or {a,b} in G1.
With respect to %22, we thus obtain that f(G2) 6= {c},
{d}, {e}, {b, c}, {b,d}, {b, e}, {c,d}, {c, e}, {d, e}, {b, c,d},
{b, c, e}, {b,d, e}, {c,d, e}, {b, c,d, e}.

a b

c

d

e

G2+2

Similarly, when considering %22 ′ , we can deduce that f(G2) 6= {a},
{a, c}, {a,d}, {a, e}, {a,b, c}, {a,b,d}, {a,b, e}, {a, c,d}, {a, c, e}, {a,d, e},
{a,b, c,d}, {a,b, c, e}, {a,b,d, e}, {a, c,d, e}, A. Put differently, we thus
have that if f(G2+2) = f(G

1) is either {b} or {a,b}, then we obtain
f(G2) = ∅. Consequently, f(G1) 6= {b}, {a,b}.
Next, consider the majority
relation G3 as given on the
right together with a prefer-
ence profile inducing G3. We
proceed with our well-known
procedure of voters joining
this electorate.

1 1 1 1 1 1

a b b c d d

e c e a e e

b d c b a c

c e d d b a

d a a e c b

a b

c

d

e

G3

If a voter with preferences %31 : c,a, e,d,b joins the
electorate, he changes G3 to G3+1, where we have
that f(G3+1) = {b,d, e}. Consequently, nothing pre-
ferred to {b,d, e} could have been selected by f in G3

and we obtain f(G3) 6= {a}, {c}, {e}, {a, c}, {a, e}, {c, e},
{d, e}, {a, c, e}, {a,d, e}, {c,d, e}, {a, c,d, e}, {b, c,d, e},
A.

a b

c

d

e

G3+1

The same modification of G3 to G3+1 can also be achieved by voters
with preferences %32 : c,a,d, e,b and %33 : c,a, e,b,d. This addition-
ally gives f(G3) 6= {d}, {a,d}, {c,d}, {a, c,d}, {a,b,d, e} due to %32 and
f(G3) 6= {b, e}, {a,b, e}, {b, c, e}, {a,b, c, e} because of %33.
We now let five different voters join the electorate,
each of them will alter G3 to G3+4, which is identi-
cal to G1. For this step of the proof, suppose that
f(G1) is either {a, c,d, e} or A. Adding a voter with
preferences %34 : b, e,d, c,a then gives that f cannot
select {b} or {b, e,d} in G3. In a similar fashion,
%35 : b,a, e,d, c excludes {a,b} from the set of pos-
sible choices.

a b

c

d

e

G3+4

Next, if a voter with %36 : c,b,a, e,d joins the electorate, we obtain
f(G3) 6= {b, c}, {a,b, c}. A voter with %37 : d,b,a, e, c causes an identical
change in the majority relation and gives that f(G3) cannot be either
{b,d} or {a,b,d}. Finally, if a voter with preferences %38 : d, c,b,a, e
joins the electorate, G3 is once more altered to G3+4 and we deduce
f(G3) 6= {b, c,d}, {a,b, c,d}.

To summarize this step, we have that if f(G3+4) = f(G
1) is either

{a, c,d, e} or A, then f(G3) = ∅. Hence, f(G1) 6= {a, c,d, e},A.
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In the next step, we focus on
G4 as depicted on the right.
Just as before, we provide
a preference profile inducing
G4.

1 1 1 1 1 1

a b b d e e

b c c e a d

c d d a b c

d a e c c a

e e a b d b

a b

c

d

e

G4

First, G4 can be altered to G4+1 if a voter with pref-
erences %41 : a,b,d, e, c joins the electorate. As we
have f(G4+1) = {a,b,d}, we obtain f(G4) 6= {a} be-
cause otherwise joining would result in a strictly
worse outcome for the corresponding voter.

a b

c

d

e

G4+1

A second voter with preferences %42 : b,d, e, c,a
changes G4 to G4+2, once again equal to G1. We
now assume f(G1) = {a}. Given this presumption
and that nothing preferred to {a} may have been
chosen in G4, we deduce that f(G4) 6= X for all
X ∈ 2A \ {∅, {a}}.
We hence have that if f(G4+2) = f(G

1) = {a}, then
f(G4) = ∅. Thus, f(G1) 6= {a}.

a b

c

d

e

G4+2

Finally, consider G5 as given
on the right together with a
preference profile inducing it.
Note that in G5, c, d, and e

are ‘symmetric’, i.e., as f satis-
fies neutrality, f has to either
select all of c,d, e or none of
them.

1 1 1 1 1 1

c c d d e e

a b a b a b

b d b e b c

d e e c c d

e a c a d a

a b

c

d

e

G5

If a voter with preferences %51 : d, c, e,b,a joins the
electorate, he changes G5 to G5+1, where b is the
Condorcet winner and thus f(G5+1) = {b}. Conse-
quently, f(G5) 6= {c,d, e}, {b, c,d, e}.

a b

c

d

e

G5+1
If, on the other hand, a voter with preferences
%52 : a,b,d, c, e joins, G5 becomes G5+2, which is
equal to G1. Lastly, supposing that f(G1) is ei-
ther {c,d, e} or {b, c,d, e}, we can consequently ex-
clude the remaining five choice possibilities from
G5: f(G5) 6= {a}, {b}, {a, e}, {a, c,d, e}, A.74

This step thus gives that if f(G5+2) = f(G
1) equals

{c,d, e} or {b, c,d, e}, then f(G5) = ∅. We therefore
have that f(G1) 6= {c,d, e}, {b, c,d, e}.

a b

c

d

e

G5+2

74 In case that f(G1) = {b, c,d, e}, a voter with preferences %53 : a,d, c, e,b has to join
the electorate in order for us to be able to exclude {a, c,d, e}.
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To put it all together, we have that for G1, a majoritarian and Pareto
optimal voting rule f satisfying Fishburn-participation has to select ei-
ther {a}, {b}, {a,b}, {c,d, e}, {a, c,d, e}, {b, c,d, e}, or A due to neutrality.
Yet, assuming f selects {b} or {a,b}, we have that f(G2) = ∅. If f se-
lects {a, c,d, e} or A, we deduce that f(G3) = ∅. f(G1) = {a} implies
that f(G4) = ∅. Finally, if f selects {c,d, e} or {b, c,d, e}, we obtain
f(G5) = ∅. We hence have that f(G1) = ∅, a contradiction. Thus, such
a voting rule f cannot exist and the impossibility is proven.

The extension from m = 5 to m > 5 works analogously to the
extension in the proof of Theorem 4.7.

With respect to the number of voters, observe that all relevant majo-
rity graphs—G2, G3, G4, and G5—require an electorate of six voters
to induce them. Together with the joining voter, we obtain the thresh-
old of n > 7 voters for this impossibility theorem to hold.75

Theorems 4.7 and 4.8 are both tight in the sense that, whenever
there are less than four or five alternatives, respectively, there exists a
voting rule that satisfies the desired properties.

An interesting question is whether these impossibilities also extend
to other preference extensions. Given the computer-aided approach,
this can be easily checked by simply replacing the preference exten-
sion in the SAT encoder. For instance, it turns out that the impossibil-
ity of Theorem 4.7 still holds if we consider a coarsening of Fishburn’s
extension that can only compare sets that are contained in each other.
Kelly’s extension, on the other hand, does not lead to an impossibil-
ity for m 6 5, which will be confirmed more generally in the next
section.

4.3.2 Kelly-Participation

Theorems 4.7 and 4.8 are sweeping impossibilities within the do-
main of majoritarian voting rules. For Kelly’s extension, we obtain a
much more positive result that covers attractive majoritarian and non-
majoritarian rules. Brandt (2015) has shown that set-monotonicity im-
plies Kelly-strategyproofness for strict preferences, and that no Con-
dorcet extension is Kelly-strategyproof when preferences are weak.
We prove that set-monotonicity (and the very mild IIV axiom) imply
Kelly-participation even for weak preferences. We have thus found

75 Theoretically, it is also possible to not have one voter join an electorate of size six,
but have a voter with reversed preferences leave the electorate in order to achieve
the same change in majority relations as well as consequences on the choice set.
However, exhaustive search shows that for at least one of the majority graphs it is
not possible to construct an electorate of size six, such that one of the voters has
exactly those reversed preferences.
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natural examples of voting rules that violate Kelly-strategyproofness
but satisfy Kelly-participation.76

Theorem 4.9
Let f be a set-valued voting rule that satisfies IIV and set-mono-
tonicity. Then f satisfies Kelly-participation.

Proof. Let f be a set-valued voting rule that satisfies IIV and set-
monotonicity. Assume for contradiction that f does not satisfy Kelly-
participation. Hence, there exist a preference profile % ∈ %(A)N and
a voter i ∈ N such that f(%−i) �Ki f(%). Let X = f(%), Y = f(%−i),
and Z = A \ (X∪ Y). By definition of Y �Ki X, we have that x ∼i y for
all x,y ∈ X∩ Y.

We define a new preference relation % ′i in which all alternatives in
Y are tied for the first place, followed by all alternatives in X \ Y as
they are ordered in %i, and all remaining alternatives in one indiffer-
ence class at the bottom of the ranking. Formally,

%i ′ = (Y ×A)∪%i|X\Y ∪ (A×Z).

Let i ′′ be a voter who is indifferent between all alternatives, i.e.,
x ∼i ′′ y for all x,y ∈ A. Since f satisfies IIV, we can deduce that
f(%−i+i ′′) = f(%−i).

By definition, %−i+i ′ is an f-improvement over both % and %−i+i ′′ .
Hence, set-monotonicity implies that f(%−i+i ′) = f(%) and
f(%−i+i ′) = f(%−i+i ′′). In summary, we obtain

f(%−i+i ′) = f(%−i+i ′′) = f(%−i) �Ki f(%) = f(%−i+i ′),

which is a contradiction.

Two rather undiscriminating voting rules that satisfy both IIV and
set-monotonicity are the Pareto rule and the omninomination rule, which
returns all alternatives that are ranked first by at least one voter.
Majoritarian voting rules satisfy IIV by definition and there are sev-
eral appealing majoritarian rules that satisfy set-monotonicity, among
those for instance the top cycle, also known as weak closure maximality,
GETCHA, or the Smith set (Good, 1971; Smith, 1973; Bordes, 1976;
Sen, 1977; Schwartz, 1986), the minimal covering set (Dutta, 1990), the
bipartisan set (see, e.g., Laffond et al., 1993; Brandt, 2015; Brandt et al.,
2016a), and variations thereof (see Laslier, 1997; Dutta and Laslier,
1999; Laslier, 2000; Brandt, 2011). These majoritarian voting rules are
sometimes criticized for not being discriminating enough.77

The computer-aided approach described in this paper can be used
to find more discriminating voting rules that still satisfy Kelly-parti-
cipation. We thereby found a refinement of the bipartisan set that,

76 It is easily seen that the proof of Theorem 4.9 straightforwardly extends to group-
participation, i.e., no group of voters can obtain a unanimously more preferred out-
come by abstaining.

77 Indeed, Scott and Fey (2012) show that the minimal covering set selects all alterna-
tives in almost all large tournaments.
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for m = 5, selects only 1.43 alternatives on average, and satisfies
Kelly-participation. For comparison, the bipartisan set, which is the
smallest previously known majoritarian voting rule satisfying Kelly-
participation, yields 2.68 alternatives on average.

4.4 conclusion

Previous results indicate a conflict between strategic non-manipula-
bility and Condorcet consistency (Moulin, 1988; Pérez, 2001; Jimeno
et al., 2009; Brandt, 2015). For example, Moulin (1988) shows that no
single-valued Condorcet extension satisfies participation and Brandt
(2015) proves that no set-valued Condorcet extension satisfies Kelly-
strategyproofness. Theorem 4.9 addresses an intermediate question
and finds that—perhaps surprisingly—Moulin’s impossibility does
not carry over to set-valued voting rules under the assumption that
voters are unaware of how a single alternative is eventually selected
out of the choice set. In this case, there exist attractive efficient Con-
dorcet extensions that satisfy Kelly-participation, even when prefer-
ences are weak.

The situation looks slightly less promising if voters act on the as-
sumption of the existence of a tie-breaking order. Here, we have pre-
sented elaborate computer-generated impossibilities (Theorems 4.7
and 4.8), which show that the encouraging results for Kelly-partici-
pation break down once preferences are extended by the more re-
fined extension due to Fishburn. Note, however, that this break-
down is mostly one in terms of efficiency: The voting rule selecting a
Condorcet winner whenever it exists and all alternatives otherwise
(COND) satisfies Fishburn-participation (Gärdenfors, 1976; Brandt
and Brill, 2011). For the sake of completeness, we also mention that,
since Condorcet consistency implies unanimity, efficiency is not com-
pletely ruled out and we are left with at least a very weak notion
thereof.

These findings improve our understanding of which behavioral as-
sumptions allow for aggregation functions that are immune to strate-
gic abstention. An overview of the main results of this chapter and
connections to other related results is given in Table 4.2.

For Fishburn’s extension, it would be interesting to closer examine
how the picture changes if majoritarianness is no longer required.
In particular, the question is whether there is a pairwise voting rule
satisfying Condorcet consistency, Pareto optimality and Fishburn-par-
ticipation. For any combination of three out of these four properties,
we can give an affirmative answer.

• The uncovered set is majoritarian, i.e., also pairwise, Condorcet
consistent and Pareto optimal (Fishburn, 1977). It does, how-
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ever, violate Fishburn-participation (Theorem 4.7 and
Theorem 4.8).

• COND is majoritarian, i.e., also pairwise, Condorcet consistent
and satisfies Fishburn-participation (Gärdenfors, 1976; Brandt
and Brill, 2011). In the absence of a Condorcet winner, it also
selects potentially Pareto dominated alternatives, though.

• Borda’s rule is pairwise, Pareto optimal, and satisfies Fishburn-
participation (Theorem 5.10 and Moulin, 1988). On the other
hand, it is well-known that it may fail to choose the Condorcet
winner.

• COND ∩ PO satisfies Condorcet consistency, Pareto optimality
and Fishburn-participation (Brandt and Brill, 2011). Still, PO is
not pairwise.

If we however require all four properties, the situation is unclear to
the best of our knowledge. While the essential set (ES) (Dutta and
Laslier, 1999) appears to be a promising candidate at first glance be-
cause of Theorem 5.14, this unfortunately is false hope.78

To see this, consider the weighted majority graph
G as depicted on the right.79 Here, the essential
set is {a,b, c,d} due to a unique maximal lottery
1/5a+ 2/5b+ 1/5 c+ 1/5d.
If a voter i with preferences %i : a,b, c,d leaves an
electorate inducing G, we obtain G−i as given on
the right. This changes the essential set to {a,b, c}
as the new maximal lottery is 1/5a+ 1/5b+ 3/5 c.
Since ES(G−i) �Fi ES(G), we have a successful ma-
nipulation by strategic abstention and Fishburn-
participation is violated.

a b

cd

2

2
2
2
2

G

a b

cd

3

1
1

1
3
1

G−i

78 The essential set basically is the set of alternatives given positive probability by maxi-
mal lotteries, which are pairwise, Condorcet consistent and satisfy strong notions of
efficiency and participation for probabilistic voting rules. See also Section 5.1.2 for a
definition of maximal lotteries and Section 5.3.4 for a discussion of maximal lotteries
and participation.

79 Even though the edge weights do not match exactly, this weighted majority graph is
similar in spirit to the majority graph in Example 4.2.
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strict preferences weak preferences
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X
all set-monotonic voting rules that
satisfy IIV (Thm. 4.9)
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-
pr
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s

X all set-monotonic
voting rulesa

– no Condorcet ex-
tensiona, no pair-
wise & Pareto op-
timal voting rule
(m,n > 3)d

Fi
sh

bu
rn

-
pa

rt
ic

ip
at
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n

– no majoritarian &
Pareto optimal vot-
ing rule (m > 5,
n > 7) (Thm. 4.8)

– no majoritarian &
Pareto optimal vot-
ing rule (m > 4,
n > 6) (Thm. 4.7)

X few undiscrim-
inating voting
rules, e.g., CONDb,
TCb,g, and POe

(Lem. 4.4), and all
scoring rulesf

st
ra

te
gy

-
pr

oo
fn

es
s

– no majoritarian &
Pareto optimal vot-
ing rule (m > 5,
n > 7)c

– no anonymous &
Pareto optimal vot-
ing rule (m,n >
3)d

X few undiscrim-
inating voting
rules, e.g., CONDb,
TCb,g, and POe

Table 4.2: Overview of results for participation and strategyproofness with
respect to Kelly’s and Fishburn’s extension and strict/weak pref-
erences; the symbol X marks sufficient conditions or suitable
rules while – marks impossibility results. a: Brandt (2015),
b: Brandt and Brill (2011), c: Brandt and Geist (2016), d: Brandt
et al. (2018), e: Feldman (1979a), f: Moulin (1988), g: Sanver and
Zwicker (2012).



5
T H E N O -S H O W PA R A D O X F O R P R O B A B I L I S T I C
V OT I N G R U L E S

Probabilistic voting rules have a surprisingly long tradition that
reaches back as far as ancient Greece (Headlam, 1933). Their formal
analysis, however, has only begun in the relatively recent past with
Zeckhauser (1969), Fishburn (1972b), and Intriligator (1973). Of late,
probabilistic rules have gained increasing attention by political scien-
tists (see, e.g., Dowlen, 2009; Stone, 2011) as well as researchers work-
ing in the field of voting theory (see, e.g., Bogomolnaia et al., 2005;
Chatterji et al., 2014). In computer science, randomization is often
used as a successful technique in algorithm design and the transfer
to voting coincides with the rise of computational social choice (see,
e.g., Conitzer and Sandholm, 2006; Procaccia, 2010; Birrell and Pass,
2011; Walsh and Xia, 2012; Service and Adams, 2012; Aziz, 2013; Aziz
et al., 2014; Aziz et al., 2015; Aziz et al., 2018a). We refer to Brandt
(2017) and Brandt (2018) for a more profound overview of probabilis-
tic voting rules.

One key advantage of the probabilistic setting is higher flexibility.
Where a single-valued rule only has m different choices and the num-
ber of choice sets is limited to 2

m - 1 for set-valued rules, there is a
practically endless pool of probability distributions over alternatives
as long as there are at least two of them. Therefore, we are not limited
to examine the classical NSP, i.e., whether a voter can benefit from ab-
staining from the election process. The continuity of possible choices
allows us to study if participating is actually better or even strictly
better than not casting one’s ballot. We link these new degrees of
participation to varying notions of efficiency, mostly in the context of
majoritarian, pairwise, or anonymous and neutral probabilistic vot-
ing rules.

This chapter is structured as follows: we first define relevant no-
tation unique to the probabilistic setting in Section 5.1. Next, Sec-
tion 5.2 introduces two stronger notions of participation. Results are
presented and discussed in Section 5.3, followed by some concluding
remarks in Section 5.4.

5.1 preliminaries

We here complement Section 2 with concepts unique to the proba-
bilistic setting. From Section 2.5 particularly recall that a voting rule
satisfies ex post efficiency if it never puts positive probability on Pareto

81
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dominated alternatives. Σ-efficiency of a voting rule requires that it
never chooses a Σ-dominated lottery.

In the following, two preference extensions for lotteries are defined
in Section 5.1.1, while Section 5.1.2 explains probabilistic voting rules
used in this chapter.

5.1.1 Preference Extensions

Preference extensions as introduced in Section 2.4 can be used to lift
individual preferences %i over single alternatives to preferences %Σi
over lotteries. We here define the stochastic dominance and pairwise
comparison extensions used later on and point to Cho (2016) and
Brandt (2017) for a more detailed discussion of further extensions.

It is a common assumption that voters are equipped with von
Neumann-Morgenstern (vNM) utility functions, i.e., functions that
assign a cardinal value to every alternative (von Neumann and Mor-
genstern, 1947). However, these utility functions are in principle un-
known to a central planner, just as they usually are unclear to the in-
dividual voters themselves. In contrast, voters are typically assumed
to be able to identify an ordinal ranking of alternatives, i.e., their
preferences %i. The first extension we define tries to overcome the
uncertainty regarding cardinal utility values by declaring one lottery
better than another if it would be better no matter the specific vNM
function.

This given, a lottery p is said to be preferred to q by voter i ac-
cording to stochastic dominance (SD), written p %SD

i q, if the expectedstochastic
dominance utility for p is at least as large as the expected utility for q for every

possible vNM utility function consistent with %i. Formally, we have
that p %SD

i q if for all x ∈ A, the probability that p yields an alterna-
tive at least as good as x is greater or equal than the probability that
q yields an alternative at least as good as x, i.e.,

∑
y : y%ix

p(y) >
∑

y : y%ix

q(y) for all x ∈ A.

Note that for two lotteries p and q it might be the case that neither
p %SD

i q nor q %SD
i p, i.e., p and q may be incomparable under SD

(see Example 5.1). The SD extension has been widely studied and can
be considered the most well-known preference extension for lotteries
(see, e.g., Gibbard, 1977; Postlewaite and Schmeidler, 1986; Bogomol-
naia and Moulin, 2001).

Next, we can define a different extension without even reasoning
about underlying utilities. Assuming we are unaware of the existence
of any such utility function and do not know about intensities of pref-
erences, it is still reasonable to assume that one lottery is preferred
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to another if it has a better chance to yield a more preferred alterna-
tive.80

The pairwise comparison (PC) extension was introduced recently by pairwise comparison

Aziz et al. (2015) and prescribes that lottery p is preferred to lottery q
if the probability that p yields an alternative preferred to what q gives
is greater or equal than the probability that q yields an alternative
preferred to what is returned by p. Formally, p %PC

i q if∑
x,y : x%iy

p(x)q(y) >
∑

x,y : x%iy

p(y)q(x).

With φi ∈ {−1, 0, 1}A×A,

(φi)xy =


1 if x �i y,

0 if x ∼i y, and

−1 if y �i x,

this is equivalent to defining p %PC
i q if pT φi q > 0.81 PC is a strength-

ening of SD in the sense that p %SD
i q implies p %PC

i , i.e., whenever
a lottery p is SD-preferred over q, p is also PC-preferred over q
(Fishburn, 1984a). In contrast to SD, the PC extension is complete.
It may, however, return intransitive preferences over lotteries, even
when preferences over alternatives are transitive (see also Blavatskyy,
2006; Aziz et al., 2015; Aziz et al., 2018a; Brandl and Brandt, 2018).
Example 5.1

Consider %i : a,b, c and three lotteries p = 1/2a+ 1/2 c, q = b,
and r = 1/2b+ 1/2 c. We have that p �SD

i r as well as q �SD
i r

but p and q are SD-incomparable. For the PC extension, we
easily see that p ∼PC

i q.

We will use SD and PC to obtain varying degrees of efficiency.
Since PC is a strengthening of SD, we have that PC-efficiency is
stronger than SD-efficiency, which is stronger than ex post efficiency.
The relationship between different concepts of efficiency is also de-
picted in Figure 5.2 on page 100, which summarizes many results
presented later on.

5.1.2 Probabilistic Voting Rules

Multiple probabilistic voting rules are used in Section 5.3, mostly to
show the compatibility of different degrees of efficiency and partici-
pation. In order to present our results more smoothly, formal defini-
tions accompanied by a short example are put together here.

Random serial dictatorship (RSD) is the canonical generalization of random serial
dictatorship

80 While this definition theoretically allows for the underlying individual preferences
to be cyclic, we do assume transitive preferences throughout.

81 It is clear from this formulation that the PC extension is a special case of more
general skew-symmetric bilinear (SSB) utility functions that also allow for intensities
of preferences (Fishburn, 1982b; Fishburn, 1984c; Fishburn, 1988).
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random dictatorship (Gibbard, 1977) to weak preferences. Intuitively,
RSD chooses an ordering of voters uniformly at random and allows
each voter to further narrow down the set of alternatives chosen by
his predecessors based on his preferences. For a later proof, it will
turn out advantageous to use a rather uncommon recursive definition
of RSD:

RSD(%,X) =

{∑
x∈X 1/|X| x if % = ∅, and∑|%|

i=1
1/|%| RSD(%−i, max %i(X)) otherwise.

RSD(%) is defined as RSD(%,A). For an equivalent definition employ-
ing permutations, we refer to, e.g., Aziz et al. (2018a) or Section 6.2.1
in the context of random assignment. RSD has attracted consider-
able attention from researchers working on probabilistic voting, who
have argued that RSD fares well with respect to immunity against ma-
nipulation by misrepresentation, but only satisfies comparably weak
notions of efficiency (Aziz et al., 2018a).82 Computing RSD has been
shown to be #P-complete (Aziz et al., 2013b).

Next, we define maximal lotteries (ML) as first considered by Krew-maximal lotteries

eras (1965) and rediscovered and thoroughly studied by Fishburn
(1984b).83 Maximal lotteries can be computed as mixed maximin
strategies, or equivalently Nash equilibria, of the two-player zero-
sum game given by the majority margins gxy(%).84, 85

Note that ML does not necessarily return a unique lottery but pos-
sibly infinitely many. However, Brandl et al. (2016) show that the
set of profiles admitting a unique maximal lottery is open and dense.
The set of profiles admitting multiple maximal lotteries is therefore
nowhere dense and thus negligible. Out of all probabilistic voting
rules defined here, ML is the only Condorcet consistent one, i.e., it
uniquely chooses a possible Condorcet winner with probability one.

Lastly, BOR is an artificial voting rule used later mostly for the
sake of visualization. The probabilistic Borda’s rule (BOR) chooses theBOR

82 In fact, Brandl et al. (2018) show that no probabilistic voting rule can satisfy reason-
ably strong versions of strategyproofness and efficiency simultaneously.

83 Over the years, maximal lotteries or variants thereof were independently rediscov-
ered by researchers originating from different fields including economics, mathemat-
ics, political science, and computer science (see, e.g., Laffond et al., 1993; Felsenthal
and Machover, 1992; Fisher and Ryan, 1995; Rivest and Shen, 2010). Maximal lot-
teries were recently characterized axiomatically by Brandl et al. (2016) and are also
considered in private good settings such as probabilistic matching markets and ran-
dom assignment (see, e.g., Kavitha et al., 2011; Aziz et al., 2013c; Brandt et al., 2017b,
and Section 6.2.4).

84 Maximin strategies and zero-sum games go back to von Neumann (1928). Though
conceptually simple, zero-sum games have received considerable attention in the
literature (see, e.g., von Neumann and Morgenstern, 1944; Kuhn and Tucker, 1950).

85 We interpret the alternatives as both players’ actions and set the row player’s payoff
when playing x against y to be gxy with the column player’s payoff −gxy = gyx.
WithM ∈ ZA×A,Mxy = gxy, p is a maximin strategy if pTMq > 0 for all q ∈ ∆(A).
Mixed maximin strategies can be computed efficiently and having a zero-sum game
they equal Nash equilibria (Nash, 1950; Nash, 1951).
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uniform lottery over all Borda winners,

BOR(%) =
1

| arg maxy∈A sy(%)|

∑
x∈arg maxy∈A sy(%)

x.

Note that slightly different from the definition in Section 3.1.1, Borda
scores are commonly defined as

sx(%) =
∑
i∈N

|{y ∈ A : x �i y}|+ 1/2 |{y ∈ A \ {x} : x ∼i y}|

for possible indifferences.

Example 5.2
Consider the preference profile % with votersN = {1, . . . , 5} and
alternatives A = {a,b, c,d} as given below.

We see that RSD(%) = 2/5a+ 2/5b+ 1/5 c.
The unique maximal lottery can be computed
to be ML(%) = 3/5a+ 1/5b+ 1/5 c, and we
moreover determine BOR(%) = b as alterna-
tive b is the Borda winner.

1, 2 3, 4 5

a b c

b d a

d c b

c a d

5.2 stronger notions of participation

Recall from Section 2.4 that a voting rule f is manipulable by strate-
gic abstention for a preference extension Σ if there are A, N ∈ F(N),
and % ∈ %(A)N such that f(%−i) �Σi f(%) for some i ∈ N. f satisfies
Σ-participation if it is not manipulable by strategic abstention. In
game-theoretic terms, we can thus interpret participating as strictly
undominated (by not voting).

Note, however, that for incomplete extensions Σ, Σ-participation of-
ten relies on the fact that two lotteries p and q are Σ-incomparable.
For instance SD-participation only prescribes that manipulation never
is possible for all vNM utility functions in line with the voters’ pref-
erences. It does not necessarily contradict a potential manipulation
for some specific vNM function. This problem is addressed by strong
participation.

A voting rule f satisfies strong Σ-participation if f(%) %Σi f(%−i) for strong participation

all A, N ∈ F(N), % ∈ %(A)N, and i ∈ N. Hence, strong participation
is satisfied if the outcome obtained by voting always is weakly pre-
ferred to what would have resulted of abstaining. In game-theoretic
terms, we correspondingly have that voting is a very weakly domi-
nant strategy.

We additionally define a group-based notion. A voting rule f is said
to satisfy strong Σ-group-participation if for all A, N ∈ F(N), strong

group-participation% ∈ %(A)N, and S ⊆ N, f(%) %Σi f(%−S) for all i ∈ S. By definition,
strong group-participation implies strong participation.
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The framework of probabilistic voting rules allows for the defini-
tion of a third, even stronger notion of participation.86 It demands
that a voter should always strictly prefer participating over abstain-
ing, i.e., voting is a strictly dominant strategy, whenever an improve-
ment is possible. This is of special interest for settings where voting
is associated with a (possibly small) cost.87 Formally, a voting rule f
satisfies very strong Σ-participation if for all A, N ∈ F(N), % ∈ %(A)N,very strong

participation and i ∈ N{
f(%) �Σi f(%−i) if supp(f(%−i)) 6⊆ max %i(A), and

f(%) %Σi f(%−i) otherwise.

An equivalent formulation requires{
f(%) �Σi f(%−i) if ∃q ∈ ∆(A) such that q �Σi f(%−i), and

f(%) %Σi f(%−i) otherwise.

While it is theoretically possible to also define very strong group-
participation, we remark that this notion would be so strong it cannot
be satisfied by any voting rule f. To see this, consider a group of two
not completely indifferent abstaining voters i, j with reversed prefer-
ences. As an improvement has to be possible for at least one voter, say
i, we require f(%) �Σi f(%−i,j), which in turn gives f(%−i,j) �Σj f(%),
a violation of very strong group-participation.

All three notions of participation form a hierarchy: very strong
participation implies strong participation and strong participation im-
plies participation. These relationships are also depicted in Figure 5.1.
With respect to PC and SD, we have that PC-participation and strong
PC-participation coincide as PC is complete. Moreover, we directly ob-
tain that strong SD-participation implies PC-participation, which in
turn implies SD-participation. These implications for different prefer-
ence extensions are also visualized in Figure 5.2 on page 100.

Just as it is the case for participation, the probabilistic setting also al-
lows for a meaningful definition of stronger notions of strategyproof-
ness. Given an extension Σ, we say a voting rule f satisfies strong
Σ-strategyproofness if f(%) %Σi f(%

′) for all A, N ∈ F(N), i ∈ N, andstrong
strategyproofness %,% ′ ∈ %(A)N with %j = % ′j for all j ∈ N−i.88 Very strong strat-

egyproofness would demand that for every preference profile any
voter strictly prefers telling his true preferences over submitting a mis-
representation whenever strict preference is possible. Since
misrepresentation also includes, e.g., a swap of the two least pre-
ferred alternatives, no reasonable voting rule satisfies very strong
strategyproofness and we forgo a formal definition thereof.

86 This strong version of participation can of course also be defined for single-valued
and set-valued rules. However, it is of questionable usefulness as it generally is
prohibitive on its own in these settings.

87 Note that this cost is not necessarily monetary but may be interpreted as the effort
required to determine one’s preferences.

88 In the literature, the terms weak strategyproofness and strategyproofness are sometimes
also used for what we call strategyproofness and strong strategyproofness.
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strong strategyproofness

strategyproofness

very strong participation

strong participation

participation

strong group-participation

group-participation

Figure 5.1: Implications between the different notions of participation and
two variants of strategyproofness; a solid arrow from one notion
to another signifies the former implies the latter; strategyproof-
ness implies participation if individual preferences may contain
indifferences and the presence of completely indifferent voters
does not change the outcome.

For groups of voters, we define a voting rule f to satisfy strong
Σ-group-strategyproofness if f(%) %Σi f(%

′) for all A, N ∈ F(N), S ⊆ N, strong group-
strategyproofnessi ∈ S, and %,% ′ ∈ %(A)N with %j = % ′j for all j ∈ N \ S.

5.3 results and discussion

We first direct focus to very strong SD-participation in Section 5.3.1.
Next, we analyze strong SD-group-participation and strong SD-par-
ticipation in Section 5.3.2, followed by SD-group-participation and
SD-participation in Section 5.3.3. In each of these sections, we start
with majoritarian voting rules and continue on to pairwise as well as
anonymous and neutral ones. Lastly, we study the NSP for maximal
lotteries and show that they satisfy PC-participation but fail to satisfy
strong SD-participation in Section 5.3.4.

5.3.1 Very Strong SD-Participation

Very strong SD-participation is the strongest variant of participation
we consider. Since every potential voter not perfectly content anyway
has to be able to influence the outcome in his favor by joining the
electorate, it is easy to see that very strong participation is impossible
to be satisfied by a majoritarian voting rule.

Theorem 5.3
There is no majoritarian probabilistic voting rule satisfying very
strong SD-participation even when preferences are strict.
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Proof. Let N = {1, 2, 3}, A = {a,b}, and % = (%1,%2,%3) such that
%1,%2 : a,b, %3 : b,a. Note that %M = %M−3 = %M1 . Therefore, for
every majoritarian probabilistic voting rule f, it holds that

f(%) = f(%−3) = f(%1).

Assume for contradiction that f satisfies very strong SD-participation,
i.e., we have

f(%−3) = f(%) = b

since this is the only way to satisfy f(%) %SD
3 f(%−3). This however

contradicts f(%−3) �SD
2 f(%1), which would be required due to b not

being voter 2’s first preference.

Whether this impossibility carries over to pairwise voting rules or
there is a pairwise voting rule satisfying very strong SD-participation
is currently open.89 However, it is possible to show that if such a
rule exists, it has to always give positive probability to all alternatives
and therefore does not satisfy even the weakest notions of efficiency.
This is no coincidence, as the following theorem shows that if only
unanimity were required, there is no pairwise rule satisfying very
strong SD-participation.

Theorem 5.4
There is no pairwise and unanimous probabilistic voting rule
satisfying very strong SD-participation even when preferences
are strict.

Proof. Let N = {1, 2, 3}, A = {a,b}, and % = (%1,%2,%3) be a prefer-
ence profile such that %1,%2 : a,b, %3 : b,a. Note that any pairwise
and unanimous probabilistic voting rule f has to choose

f(%−3) = f(%1) = a.

By gab(%1) = gab(%) we deduce f(%1) = f(%). Put together, it can
never be the case that f(%) �SD

3 f(%−3).

When trying to link very strong SD-participation to Condorcet con-
sistency, it is easy to see that no Condorcet extension satisfies the
strongest notion of participation. This directly follows from the ob-
servation that as long as the Condorcet winner beats all other alterna-
tives by a margin of at least two, no single voter is able to influence
the outcome, even when the Condorcet winner is not his most pre-
ferred alternative.

Within the unrestricted domain of probabilistic voting rules very
strong SD-participation can be satisfied together with certain notions
of efficiency. While compatibility with SD-efficiency is still open, for
instance RSD at least satisfies very strong SD-participation and ex post
efficiency.

89 The voting rule EXP previously claimed to simultaneously satisfy both properties in
[1] does so only for up to three alternatives. For four or more alternatives it even
violates strong SD-participation.
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Theorem 5.5
RSD satisfies anonymity, neutrality, ex post efficiency and very
strong SD-participation.

Proof. We only prove very strong SD-participation here and refer to
Aziz et al. (2018a) for ex post efficiency. Anonymity and neutrality
are clear from the definition of RSD. Let N ∈ F(N), % ∈ %(A)N, and
i ∈ N. A first step for showing very strong SD-participation is to
prove that RSD(%) %SD

i RSD(%−i). It is already known that RSD sat-
isfies strong SD-strategyproofness, i.e., RSD(%) %SD

i RSD(% ′) for every
preference profile % ′ ∈ %(A)N where % ′j = %j for all j 6= i (see, e.g.,
Aziz et al., 2018a). If voter i is completely indifferent between all
alternatives in A, it holds that RSD(%) = RSD(%−i). We obtain as a
direct consequence that RSD satisfies strong SD-participation.

In order to see that the even stronger notion applies, assume that
%−i allows for a strict improvement for i, i.e., there is p ∈ ∆(A) such
that p �SD

i RSD(%−i). Thus, at least some probability is given to
alternatives not ranked first by voter i when he abstains,

RSD(%−i)(max %i(A)) < 1.

We have

RSD(%)(max %i(A))

= RSD(%,A)(max %i(A))

=
∑
j∈N

1/nRSD(%−j, max %j(A))(max %i(A))

= 1/n+ 1/n
∑
j∈N−i

RSD(%−j, max %j(A))(max %i(A))︸ ︷︷ ︸
>RSD(%−{i,j},max %j(A))(max %i(A))

> 1/n+ n−1/n RSD(%−i,A)(max %i(A))︸ ︷︷ ︸
<1 by assumption

> RSD(%−i,A)(max %i(A))

= RSD(%−i)(max %i(A)).

This shows that the total probability given to alternatives ranked first
by voter i strictly increases if he chooses to participate, compared to
a possible abstention. We conclude that RSD(%) �SD

i RSD(%−i) for
all i ∈ N, which means RSD satisfies very strong SD-participation.

It is noteworthy that RSD is by far not the only voting rule satisfy-
ing very strong SD-participation and ex post efficiency. Further voting
rules can be created at will using the convex combination of RSD and
other rules. As long as those additional voting rules satisfy strong
SD-participation, a mixture of both inherits the very strong notion.

Theorem 5.6
Let f1, f2 be two ex post efficient probabilistic voting rules such
that f1 satisfies very strong SD-participation and f2 satisfies
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strong SD-participation. Moreover, let λ ∈ (0, 1). Then, a prob-
abilistic voting rule f defined as f = λf1 + (1− λ)f2 satisfies ex
post efficiency and very strong SD-participation.

Proof. Let f1, f2, f, and λ be as above. First, note that if both f1, f2 put
probability zero on all Pareto dominated alternatives x ∈ A, so does
f. In addition, we have for all N ∈ F(N), % ∈ %(A)N, y ∈ A, i ∈ N,
and k ∈ {1, 2},∑

x∈A : x%iy

fk(%)(x) >
∑

x∈A : x%iy

fk(%−i)(x)

and it additionally holds for all i ∈ N for whom an improvement is
possible that there is some y ′ ∈ A such that∑

x∈A : x%iy ′

f1(%)(x) >
∑

x∈A : x%iy ′

f1(%−i)(x).

We directly deduce that for all y ∈ A, i ∈ N,∑
x∈A : x%iy

f(%)(x) >
∑

x∈A : x%iy

f(%−i)(x)

and for all voters i, for whom an improvement is possible, and the
corresponding y ′ also∑

x∈A : x%iy ′

f(%)(x) >
∑

x∈A : x%iy ′

f(%−i)(x).

Therefore, f(%) �SD
i f(%−i) or f(%) %SD

i f(%−i) for all i ∈ N, depend-
ing on whether a strict improvement is possible or not.

As a consequence, every proper convex combination of RSD and
BOR satisfies very strong SD-participation and ex post efficiency. Since
BOR will be shown to be SD-efficient in Theorem 5.10, shifting more
and more weight away from RSD results in voting rules still satisfying
very strong SD-participation and arbitrarily small violations of SD-
efficiency. Note, however, that the number of violations is not affected
by this shifting of weights and smaller violations of efficiency come
at the price of smaller incentives to participate.

Recall from Section 5.2 that very strong SD-group-participation is a
notion too strong to be satisfied by any probabilistic voting rule. Stick-
ing to RSD for the moment, we conclude this section by providing
an example that shows that RSD can be manipulated by abstaining
groups of voters, i.e., does not even satisfy SD-group-participation.

Example 5.7
Consider N = {1, 2, 3, 4}, A = {a,b, c,d}, and % as given below.
Here,

RSD(%) = 1/3a+ 1/3b+ 1/6 c+ 1/6d
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and if voters 1 and 2 abstain, we obtain

RSD(%−1,2) = 1/2a+ 1/2b.

For both voters i ∈ {1, 2}, it holds
that RSD(%−1,2) �SD

i RSD(%), i.e.,
for both voters abstaining results
in a strictly preferred lottery. This
example furthermore illustrates a
violation of SD-efficiency.

1 2 3 4

a,d b, c a, c b,d
b a b a

c d d c

5.3.2 Strong SD-Participation

Since very strong participation implies strong participation, i.e.,
voting rules satisfying very strong SD-participation also satisfy strong
SD-participation, positive results from the previous section carry over.
Similar to Section 5.3.1, we begin our study by considering majori-
tarian voting rules. First, note that while there is no majoritarian
probabilistic voting rule satisfying very strong SD-participation (The-
orem 5.3), there exist majoritarian rules satisfying strong SD-partici-
pation. The arguably simplest example is a constant rule that always
chooses the uniform distribution over all alternatives. However, this
rule does, of course, not satisfy any degree of efficiency. We find this
to be unsurprising as indeed only requiring unanimity leads to an
impossibility.

Theorem 5.8
When m > 4, there is no unanimous majoritarian probabilistic
voting rule satisfying strong SD-participation, even when pref-
erences are required to be strict.

Proof. Let A = {a,b, c,d}. For contradiction, suppose f is a proba-
bilistic voting rule satisfying majoritarianness, unanimity, and strong
SD-participation. Throughout this proof, we often argue about majo-
rity graphs G without necessarily connecting them to a specific un-
derlying preference profile. Hence, we often also write f(G) instead
of f(%) = f(%M) if %M = G.

First, look at majority graph Gα as depicted below and note that
Gα is transitive and could thus be induced by only one voter with
preferences %i: a,d, c,b. By unanimity, we obtain f(Gα) = a.

a b

cd

Gα

a b

cd

Gβ

a b

cd

Gγ

a b

cd

G

Now, let two new voters α,α ′ with identical preference relation
%α,%α ′ : b,a, c,d join an electorate with preference profile % indu-
cing Gα. For the following argument, assume % to be of the form
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that |gxy(%)| > 3 for all (x,y) ∈ A×A \ {(a,b), (b,a)}, x 6= y, and
gab(%) = 1. The additional voters alter the majority graph in a
way such that %M+α,α ′ = G. By strong SD-participation we have that
f(G) %SD

α f(Gα). Consequently, neither c nor d may receive positive
probability in G,

f(G)(c) = f(G)(d) = 0.

Next, consider majority graph Gβ that is induced by, e.g.,
(%j1 ,%j2 ,%j3),

%j1 : d,a, c,b, %j2 : d,b,a, c, %j3 : d, c,b,a.

Using unanimity we obtain f(Gβ) = d. Analogously to before, let
two voters β,β ′ with preferences %β,%β ′ : a,d,b, c join a different
electorate with preference profile % ′ inducing Gβ. We suppose % ′ to
be of the form that |gxy(% ′)| > 3 for all (x,y) ∈ A×A \ {(a,d), (d,a)},
x 6= y, and gda(% ′) = 1. This changes the majority graph of % ′ such
that % ′M+β,β ′ = G. Once more, voter β has to weakly prefer f(G) to
f(Gβ) due to strong SD-participation, f(G) %SD

β f(Gβ). Consequently,

f(G)(b) = f(G)(c) = 0

and together with f(G)(d) = 0 we deduce f(G) = a.
Due to neutrality, we know that

f(Gγ) = 1/4a+ 1/4b+ 1/4 c+ 1/4d.

We now add a single voter γ, %γ : d,b,a, c, to an electorate with pref-
erence profile % ′′ inducing Gγ, where

gad(%
′′) = gdc(%

′′) = gcb(%
′′) = gba(%

′′) > 2.

The majority graph is thus altered such that % ′′M+γ = G. Note that for
γ, f(G) and f(Gγ) are incomparable according to the SD-extension
and in particular f(G) 6%SD

γ f(Gγ). This contradicts that f satisfies
strong SD-participation and concludes the proof.

Note that Condorcet consistency implies unanimity. Hence, Theo-
rem 5.8 also answers whether there is a majoritarian Condorcet exten-
sion satisfying strong SD-participation.

Corollary 5.9
When m > 4, there is no majoritarian probabilistic voting rule
satisfying Condorcet consistency and strong SD-participation,
even when preferences are required to be strict.

We now turn to pairwise voting rules. In contrast to very strong
SD-participation which is mutually exclusive with even the weak no-
tion of unanimity (Theorem 5.4), there exist pairwise voting rules
satisfying strong SD-participation and SD-efficiency. A possible rep-
resentative is BOR that randomizes over all Borda winners.
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Theorem 5.10

BOR is pairwise and satisfies SD-efficiency as well as strong
SD-participation.

Proof. We begin by showing that BOR is pairwise. Therefore, observe
that

|{i ∈ N : x �i y}|+ 1/2 |{i ∈ N : x ∼i y}| = 1/2n+ 1/2gxy.

We can thus rewrite the definition of sx(%) as

sx(%) =
∑

y∈A\{x}

|{i ∈ N : x �i y}|+ 1/2 |{i ∈ N : x ∼i y}|

=
∑

y∈A\{x}

1/2n+ 1/2gxy

= 1/2n(m− 1) + 1/2
∑

y∈A\{x}

gxy.

Hence, the order of the sx(%) and thus also the outcome of BOR only
depends on gxy and consequently BOR is pairwise.

In order to see that BOR satisfies strong SD-participation, consider
the following: if by joining an electorate N−i, some voter i can force
an alternative a into the set of Borda winners without dropping any
other, then a has to be ranked above the other Borda winners in %i,
i.e., BOR(%) %SD

i BOR(%−i). On the other hand, if i can force an al-
ternative b out of the set of Borda winners by participating, b has to
be ranked below the other Borda winners in %i giving once more
BOR(%) %SD

i BOR(%−i). A combination of both arguments yields
that even for some alternatives being added to the set of Borda win-
ners as well as others being left out when i participates in the election,
we always get BOR(%) %SD

i BOR(%−i).
Finally, suppose BOR does not satisfy SD-efficiency, i.e., there exists

some electorate N ∈ F(N), preference profile % ∈ %(A)N, and lottery
p ∈ ∆(A) such that p %SD

i BOR(%) for all i ∈ N. First, note that there-
fore ∑

x∈supp(p)

p(x)sx(%) >
∑

x∈supp(BOR(%))

BOR(%)(x)sx(%).

Stated differently and taking into account that one voter has to strictly
SD-prefer p, the (weighted) average Borda score of the alternatives in
supp(p) would have to be greater than the one of the alternatives
in supp(BOR(%)). This contradicts the fact that BOR chooses the
alternatives with maximal Borda score and concludes the proof of
Theorem 5.10.

Note that following very similar arguments, it is easy to show that
randomizing uniformly over the winners of any scoring rule with
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strictly monotonically decreasing scoring vector satisfies strong SD-
participation and SD-efficiency. However, such rules in general do
not have to be pairwise.

We now turn to groups of voters. While BOR appears to be a
good choice for a first glance, we find that it only satisfies SD-group-
participation. This can be seen by using arguments resembling those
employed in the proof of Theorem 5.10. If an abstaining group of
voters S causes some alternative x to drop out of the set of Borda
winners, x has to receive a higher Borda score and thus be more pre-
ferred on average by members of Swhen compared to any alternative
remaining or becoming a Borda winner. In particular, there exists at
least one voter i ∈ S for whom f(%−S) 6%SD

i f(%). Equivalently, if by
abstaining S can force an alternative x into the set of Borda winners,
x has to be less preferred on average compared to any alternative be-
coming or remaining a Borda winner. Consequently, there is at least
one i ∈ S for whom f(%−S) 6%SD

i f(%). In total, this contradicts a suc-
cessful manipulation by S ⊆ N. The fact that BOR does not satisfy
strong SD-group-participation follows from Theorem 5.11 below.

In absence of requirements for efficiency, strong SD-group-partici-
pation can easily be satisfied by, e.g., a voting rule always selecting the
uniform distribution over all alternatives. If some notion of efficiency
would be demanded, though, no anonymous and neutral voting rule
can meet these conditions as the following theorem shows.

Theorem 5.11

There is no anonymous and neutral probabilistic voting rule
satisfying unanimity and strong SD-group-participation.

Proof. Let A = {a,b, c} and N = {1, 2, 3} with %1 : a,b, c, %2 : b, c,a,
and %3 : c,a,b. Any anonymous and neutral voting rule f has to
choose f(%) = 1/3a+ 1/3b+ 1/3 c. Unanimity of f additionally yields
f(%1) = f(%−2,3) = a. However, f(%) 6%SD

3 f(%−2,3) and thus f does
not satisfy strong SD-group-participation.

5.3.3 SD-Participation

In contrast to before, only requiring SD-participation allows for ma-
joritarian and mildly efficient probabilistic voting rules. The voting
rule that returns the Condorcet winner whenever one exists and the
uniform lottery over all alternatives otherwise is majoritarian and
unanimous. Also, neither a single nor multiple voters are able to
either make their most preferred alternative Condorcet winner nor to
prevent their least preferred alternative from being Condorcet winner
by leaving the electorate. Thus, both SD-participation and SD-group-
participation are satisfied.

We find that it is not possible to further strengthen the degree
of efficiency to ex post efficiency and at the same time preserve SD-
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participation and majoritarianness. For the following proof of Theo-
rem 5.13, recall Lemma 4.5 linking Pareto optimality and the uncov-
ered set for set-valued voting rules satisfying Fishburn-particpation.
A slightly adapted (and weaker) version for probabilistic rules helps
to simplify the proof of this section’s main theorem. Note that we
also employ notation defined in the context of Lemma 4.5, in particu-
lar the covering relation and the uncovered set.

Lemma 5.12

Let f be a majoritarian and ex post efficient probabilistic voting
rule that satisfies SD-participation. Let % and % ′ be preference
profiles on A such that %M|UC(%M) = % ′M|UC(% ′M). Then

f(%) ⊆ UC(%M)

and if %M and % ′M additionally are antisymmetric, we have
that

f(%) = f(% ′).

With Lemma 5.12 at hand, we now show the incompatibility of ex
post efficiency and SD-participation for majoritarian rules.

Theorem 5.13

When m > 4, there is no majoritarian probabilistic voting rule
satisfying ex post efficiency and SD-participation.

Proof. The proof follows ideas reminiscent of the proof of Theorem 5.8
in the sense that we assume for contradiction a probabilistic voting
rule f with the desired properties exists. Arguing about multiple ma-
jority graphs, we are able to gradually eliminate possible choices of
f for a certain majority graph which culminates in f not being able
to select any alternative. Similar to before, we regularly write f(G)
instead of f(%M) if the majority graph of % equals G, %M = G.

Start the proof by letting A = {a,b, c,d} and f a majoritarian prob-
abilistic voting rule satisfying ex post efficiency and SD-participation.
First, note that by Lemma 5.12, alternatives not in UC(%M) receive
probability zero in f(%). In addition, we have that only majority com-
parisons within UC(%) effect the outcome of f.

We begin by examining majority graphs of the structure G as de-
picted below. Since alternative b is covered by a, we deduce
f(G)(b) = 0. Furthermore, due to neutrality, we get

f(G) = 1/3a+ 1/3 c+ 1/3d.

Now direct attention to Gα.

a b

cd

G

a b

cd

G ′

a b

cd

Gα

a b

cd

Gβ
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Let % be a preference profile inducing Gα and additionally assume
|gxy(%)| > 2 for all (x,y) ∈ A×A \ {(a, c), (c,a)}, x 6= y. The uncov-
ered set consists of all alternatives and there do not exist any sym-
metries, so we cannot make immediate statements concerning f(Gα).
Yet, using two auxiliary majority graphs, we show that f(Gα) can be
determined exactly.

If a voter α with preferences c �α a leaves the electorate, the ma-
jority graph of %−α equals G, regardless of how b and d are ranked.
Since f satisfies SD-participation, it must hold that f(%−α) 6�SD

α f(%).
Assume for contradiction f(Gα)(c) < 1/3. In this case, the flexibility
of b and d allows to fix individual preferences %α in a way such that
f(%−α) �SD

α f(%). Consequently, f(Gα)(c) > 1/3.
Conversely, if another voter α ′ equipped with preferences a �α ′ c

leaves the electorate, the majority graph of % changes to G ′. Note that
G ′ is isomorphic to G, i.e., equivalent to G modulo a permutation of
the alternatives. In contrast to G, alternative a is covered by d in G ′

and we obtain

f(%−α ′) = f(G
′) = 1/3b+ 1/3 c+ 1/3d.

Similar to before, it has to hold that f(%−α ′) 6�SD
α ′ f(%). In order to

prevent manipulation by a voter with preferences %α ′ : a, c, {b,d}, we
first deduce

f(Gα)(a) + f(Gα)(c) 6 1/3.

Together with f(Gα)(c) > 1/3 known from above, we can conclude
f(Gα)(c) = 1/3 and f(Gα)(a) = 0. Now, if f(Gα)(b) 6= f(Gα)(d), this
would allow for a manipulation by abstention by either %α ′ : a, c,b,d
or %α ′ : a, c,d,b, depending on whether we have f(Gα)(d) > f(Gα)(b)
or f(Gα)(b) > f(Gα)(d). We deduce f(Gα)(b) = f(Gα)(d) and putting
everything together

f(Gα) = 1/3b+ 1/3 c+ 1/3d.

On the other hand, any preference profile % ′ ∈ %(A)F(N) inducing
majority graph Gβ necessarily results in the lottery

f(Gβ) = 1/4a+ 1/4b+ 1/4 c+ 1/4d

because of neutrality. Finally, note that a voter β with preferences
%β : {a, c},d,b joining a suitable electorate with preference profile % ′

changes % ′M such that it equals Gα afterwards. From above, we
know that

f(Gα) = 1/3b+ 1/3 c+ 1/3d.

Since f(Gβ) �SD
β f(Gα), voter β has the possibility of SD-manipulation

by strategic abstention contradicting the initial assumption that f sat-
isfies SD-participation. This concludes the proof.
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5.3.4 Participation for Maximal Lotteries

We now forsake participation with respect to stochastic dominance
and turn to maximal lotteries and PC-participation. Some additional
notation is required to conveniently present our main theorem. Re-
call from Section 5.1.1 that p %PC

i q if pT φi q > 0 for φi as defined
before. For an electorate N ∈ F(N), S ⊆ N, and preference profile
% ∈ %(A)N, let φS =

∑
i∈Sφi. Using this terminology, we have that

p ∈ML(%) if pT φN q > 0 for all q ∈ ∆(A).

Theorem 5.14

Every probabilistic voting rule returning maximal lotteries satis-
fies PC-group-participation but violates strong SD-participation.

Proof. Let N ∈ F(N), S ( N, and % ∈ %(A)N. For p ∈ML(%) and
p ′ ∈ML(%−S), we then have

pT φN q > 0 for all q ∈ ∆(A), and

p ′T φN\S q > 0 for all q ∈ ∆(A)

as p and p ′ are maximal lotteries. Note that by skew-symmetry of all
φi, we have that

p ′T φN\S q > 0 for all q ∈ ∆(A)
⇔ qT φN\S p

′ 6 0 for all q ∈ ∆(A).

Thus, it follows that

pT φS p
′ = pT (φN −φN\S)p

′

= pT φN p
′︸ ︷︷ ︸

>0

−pT φN\S p
′︸ ︷︷ ︸

60

> 0.

Hence, there has to exist at least one i ∈ S for which we have that
pT φi p

′ > 0, i.e., p %PC
i p ′.

To see that strong SD-participation is vio-
lated, consider A = {a,b, c} and the pref-
erence profile % = (%1, . . . ,%6) as given
on the right. It is easily seen that

1, 2 3, 4 5, 6

a b c

b c a

c a b

ML(%) = 1/3a+ 1/3b+ 1/3 c.

Now, if an additional voter with preferences %7 : a,b, c joins the elec-
torate, we compute ML(%+7) = 3/7a+ 1/7b+ 3/7 c. Obviously
ML(%+7) 6%SD

7 ML(%), a violation of strong SD-participation. This
concludes the proof.

Theorem 5.14 is of special interest as ML satisfies a particularly
strong notion of efficiency, namely PC-efficiency (Aziz et al., 2018a).
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Table 5.1: Existence of probabilistic voting rules combining certain notions
of efficiency and participation; X and XX indicate the existence
of probabilistic voting rules satisfying single-voter participation
and group-participation, respectively.

While we have that ML fares worse than, e.g., RSD or BOR in terms of
participation, it is strictly more efficient than both. Also note that ML
is pairwise and recall from Section 5.1.2 that it additionally satisfies
Condorcet consistency.

5.4 conclusion

In this chapter, we defined and analyzed different degrees of parti-
cipation for probabilistic voting rules and studied their compatibility
with varying notions of efficiency. Results obtained in Section 5.3.1
to Section 5.3.3 are summarized in Table 5.1 for abstention by sin-
gle voters and groups alike. Positive results carry over from group-
participation to participation, from stronger to weaker notions of ef-
ficiency and participation and from majoritarianness to pairwiseness
to anonymity and neutrality. Implications are opposed when consid-
ering impossibilities.

To recap the most important points, we have seen that the voting
rule BOR satisfies desirable properties. Apart of the strong notion
of SD-efficiency, BOR also fares well in terms of resistance against
manipulation by strategic abstention both for single voters as well
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as groups thereof. This spotlights the difference between strong SD-
participation and the related strong SD-strategyproofness, which is
incompatible with anonymity, neutrality, and SD-efficiency (Bogomol-
naia and Moulin, 2001).90

For RSD, we have seen that any voter not already perfectly con-
tent with the current outcome can strictly improve his expected util-
ity by joining an electorate. It is worth noting that RSD, variants
thereof, or convex combinations of different voting rules including
RSD are not the only probabilistic voting rules to satisfy very strong
SD-participation (see also Section 1.2.4). This seems to suggest that
characterizing RSD using very strong SD-participation might well re-
quire additional technical and non-obvious properties. Also note that
in contrast to BOR, RSD can be SD-manipulated by abstaining groups
of voters.

Following Theorem 5.13, when attention is restricted to majori-
tarian probabilistic voting rules, ex post efficiency is incompatible
with SD-participation. This impossibility also holds for the complete
downward and upward lexicographic extensions (see, e.g., Cho, 2016)
as well as the pairwise comparison extension. It is unknown whether
this result still holds when stronger preference extensions, e.g., bilin-
ear dominance (see, e.g., Aziz et al., 2018a), are considered.

Theorem 5.14 is of special interest when seen together with the
central result of Moulin (1988). While Moulin shows that every Con-
dorcet consistent single-valued voting rule is prone to the NSP, Theo-
rem 5.14 establishes that there do exist attractive probabilistic
voting rules satisfying Condorcet consistency and a reasonable no-
tion of (group-)participation.91 In this sense, we can say that Moulin’s
seminal impossibility theorem for single-valued voting rules does not
extend to the probabilistic framework.

Note however, that when demanding a stronger notion of parti-
cipation instead, the original incompatibility remains intact: There
is no Condorcet consistent probabilistic voting rule satisfying strong
SD-participation (Brandt et al., 2017a).

All of these important points are also captured in Figure 5.2. When
considering the solid lines, this diagram hints at a tradeoff between
efficiency and participation similar to the tradeoff between efficiency
and strategyproofness established in recent works by Brandl et al.
(2018) and Aziz et al. (2018a). Based on this observation, we deem
it interesting to study whether there exists a probabilistic voting rule
satisfying SD-efficiency and very strong SD-participation, a question
open so far. In addition, we also leave the question whether very

90 Interestingly, BOR is known to be particularly vulnerable to strategic manipulation
by misrepresentation as it is single-winner manipulable (Taylor, 2005). This means BOR
not only violates strong SD-strategyproofness, but strategyproofness with respect to
any preference extension.

91 For a more thorough discussion of further desirable properties of maximal lotteries,
we here refer to Brandl et al. (2016).
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Figure 5.2: Relationships between efficiency and participation concepts; an
arrow from one notion of efficiency or participation to another
denotes that the former implies the latter; a solid line indicates
that there exist probabilistic voting rules with the given prop-
erties; a dashed line indicates that no probabilistic voting rule
with the given properties exists; the dotted line marks an open
problem.

strong SD-participation can be satisfied by pairwise rules for future
research.

We conclude this chapter with some remarks concerning results
presented here or extensions thereof.

Remark 5.15

For probabilistic voting rules, it is also possible to define a
notion of participation even stronger than very strong partici-
pation. This notion demands that a voter should always strictly
prefer the outcome with him participating over what would re-
sult had he abstained, i.e., we omit the restriction to situations
where he is not completely content when abstaining. Satisfac-
tion thereof, however, requires a voting rule to always select
lotteries that give positive probability to every alternative. Con-
sequently, every meaningful degree of efficiency is violated.

Voting rules satisfying this strongest notion of participation
nevertheless exist, an easy example is a rule f that mixes RSD
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and a uniform lottery over all alternatives based on the number
of voters present. Formally,

f(%) = 1/n

(∑
x∈A

1/m x

)
+ n−1/nRSD(%).

We remark that there are situations where a (moderate) vio-
lation of efficiency might even be desired. This particularly
applies to repeated decisions, where even though voters have
preferences over the alternatives, they also appreciate grander
variety to some extent, e.g., restaurants for daily lunch breaks
or artists played on the radio.

Remark 5.16

A lemma weaker than Lemma 5.12 in various aspects suffices
to show Theorem 5.13. In particular, the statement that for
any majoritarian and ex post efficient probabilistic voting rule
f, we have that supp(f(%)) ⊆ UC(%M) for all % ∈ %(A)F(N)

alone allows for an almost identical—and only slightly more
complicated—proof.

Remark 5.17

It is possible to show that the converse of Theorem 5.14 also
holds under rather mild technical assumptions. More precisely,
we can show that every homogenous and Condorcet consistent
probabilistic voting rule satisfying a notion of participation fo-
cusing on accumulated welfare with respect to the PC extension
has to return maximal lotteries.92

In addition, Theorem 5.14 as well as the converse implication
even hold in the more general domain of SSB utility theory that
allows for intensities of preferences.

Remark 5.18

A proof similar to the one of Theorem 5.14 shows that proba-
bilistic voting rules returning maximal lotteries also satisfy SD-
one-way-monotonicity. This stands in contrast to Sanver and
Zwicker (2009) and Peters (2017), who show that no single-
valued voting rule satisfies Condorcet consistency and half-way-
monotonicity, a weakening of one-way-monotonicity and parti-
cipation (see also Section 1.2.2).

Remark 5.19

Point voting schemes are a class of probabilistic voting rules
defined by Barberà (1979) on the basis of what Gibbard (1977)
calls unilateral and duple rules. Giving each alternative prob-
ability based on the sum of scores it receives from all voters,
they can be seen as a way to generalize scoring rules to the

92 A voting rule is homogenous if using multiple copies of the electorate does not affect
the outcome.
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probabilistic framework. Point voting schemes satisfy strong
SD-participation, and in case there are at least two voters with
different preference rankings, they even satisfy very strong SD-
participation.



6
T H E N O -S H O W PA R A D O X F O R R A N D O M
A S S I G N M E N T R U L E S

We now drop one of the central modeling assumptions we have ad-
hered to up to now. In all previous settings—be it single-valued, set-
valued or probabilistic voting—voters’ preferences were aggregated
to a collective choice relevant to everybody. For the remainder of
this thesis, we redirect focus to individual incentives, i.e., we assume
every involved voter is assigned a personal alternative.

This situation is well-known as assignment (or house allocation) and
regularly considered in multiagent systems and microeconomic
theory (see, e.g., Chevaleyre et al., 2006; Sönmez and Ünver, 2011;
Manlove, 2013; Bouveret et al., 2016). In this context, it is common
to name voters agents, who have preferences over objects instead of al-
ternatives. Rules assigning objects to agents will be called assignment
rules.

A central problem is how to find an assignment based on the in-
dividual preferences only that satisfies varying notions of fairness.
Since objects are indivisible and generally unique and two agents
might be equipped with identical preferences, it is easy to see that
no deterministic assignment rule can treat both identically. Just as it
was the case in the domain of voting, introducing randomization con-
stitutes an elegant way out (see, e.g., Abdulkadiroğlu and Sönmez,
1998; Bogomolnaia and Moulin, 2001; Che and Kojima, 2010; Budish
et al., 2013).

For this, we need to define random assignment rules that award to
every agent a lottery over objects. Under the common assumption
that we have an identical amount of agents and objects, a valid random
assignment thus requires every agent to receive a total probability of
one of objects and every object to be distributed with a total probabil-
ity of one, too. In order to allow agents to compare lotteries, we pick
up the concept of stochastic dominance discussed in Section 5.1.1.

In this framework, we now study incentives for participation for
three well-known random assignment rules—random serial dictator-
ship, the probabilistic serial rule, and the Boston mechanism—and
the class of popular random assignments. Our results are largely pos-
itive for single agents and groups thereof alike: we show that partici-
pation is strictly incentivized for single agents by all three rules, while
manipulation might be possible for some but never all vNM utility
functions when popular random assignments are considered. In ad-
dition, all rules as well as the class of popular random assignments

103
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satisfy varying notions of SD-group-participation. An overview of
our results is provided in Table 6.1 on page 121.

This chapter is structured as follows: we formally define the ran-
dom assignment setting in Section 6.1. In Section 6.2, we look at all
three random assignment rules and popular random assignments one
after another and study them with respect to single-agent and group-
participation. A conclusion and final remarks are given in Section 6.3.

6.1 random assignment setting

The framework required to study assignment problems and random
assignments is closely related to the (probabilisitic) voting setting.
Hence, while we formally introduce concepts that are either new or
variations of previously defined ones, we merely explain others infor-
mally and point to the section containing the corresponding defini-
tion.

Let N = {1, . . . ,n} be a set of n agents and O a set of n objects.
Together with a preference profile % ∈ %(O)N, the triple (N,O,%)

constitutes an assignment problem. For all i ∈ N, we denote by ki theassignment problem

number of indifference classes in %i and byOki the union of the upper
k indifference classes for k ∈ [ki] = {1, . . . ,ki}.

A deterministic assignment (or pure matching) is a one-to-one mapdeterministic
assignment from N to O. We identify a deterministic assignment M with a per-

mutation matrix in RN×O, whereMio = 1 if agent i is assigned object
o and Mio = 0 otherwise. The set of all deterministic assignments is
denoted by M.

In line with notation previously used, a random assignment p is arandom assignment

probability distribution (or lottery) over deterministic assignments,
i.e., p ∈ ∆(M). We represent a random assignment p as bistochastic
matrix in RN×O where p(i,o) is the probability that agent i is as-
signed object o.93 Note that by the Birkhoff-von Neumann Theorem,
every bistochastic matrix can be written as probability distribution
over deterministic assignments (see, e.g., Kavitha et al., 2011). If we
have that p = f(%) for some random assignment rule f, we also write
p−i = f(%−i) and p−S = f(%−S) with slight abuse of notation.94

For a set of agents S ⊆ N and a set of objects O ′ ⊆ O, we denote
by p(S,O ′) the sum of probabilities of agents in S for objects in O ′ in
the random assignment p. Formally, p(S,O ′) =

∑
(i,o)∈S×O ′ p(i,o).

In case either S or O ′ is a singleton, we write p(i,O ′) or p(S,o) for
convenience, respectively. To simplify notation, for p ∈ ∆(M) and
i ∈ N, we write p(i) for the ith row of p, i.e., the lottery over O
assigned to agent i.

93 A matrix M is bistochastic if all entries are nonnegative and every row and every
column sums up to one, i.e., Mij > 0 and

∑
iMij =

∑
jMij = 1 for all i, j.

94 See below for a brief discussion of how to interpret %−i and %−S in the random
assignment setting that demands for an identical number of agents and objects.
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Example 6.1
As an example consider the ran-
dom assignment p depicted on
the right where N = {1, 2, 3} and
O = {a,b, c}. Here, p(1,a) = 1/3

and p(3) = 1/4b+ 3/4 c.

p =

1/3 2/3 0
2/3 1/12 1/4

0 1/4 3/4



To determine the agents’ preferences over random assignments, we
rely on two assumptions. First, we assume an agent only cares about
the lottery he is assigned, not about what other agents receive.95

Moreover, we suppose agents compare lotteries using stochastic dom-
inance (see Section 5.1.1). Picking up Example 6.1 and assuming
agent 1 has preferences %1 : a,b, c, we thus have that p(1) �SD

1 p(3)

and p(2) �SD
1 p(3). p(1) and p(2) are not comparable for agent 1 ac-

cording to SD.
For this setting of random assignment, we want to study whether

agents may face an incentive to abstain from the allocation procedure.
First, note that by definition, we require the number of agents and
objects to be equal in any assignment problem. We therefore define
abstention by letting an agent declare complete indifference. This
leads to a natural notion of participation in settings where agents al-
ways receive an object, regardless of whether they participate in the
mechanism or not. Using a different interpretation of participation,
for a group of agents S ⊆ N, we can assume that objects are first allo-
cated to agents in N \ S and whichever objects remain are distributed
uniformly among agents in S.

For random serial dictatorship and the probabilistic serial rule, both
concepts of abstention coincide and we will use whichever suits our
needs best throughout the proofs to come. The Boston mechanism is
defined for strict preferences only and it is intuitively unclear how to
extend it to possible indifferences. Hence, we stick to the interpreta-
tion of abstainers being rewarded what is left after a first round in
Section 6.2.3. Popular random assignments, on the other hand, do
not allow for multiple rounds of allocation and we thus go with the
idea of complete indifference in Section 6.2.4.

In order to study possible incentives for participating or abstaining,
we use the degrees of single-agent and group-participation defined in
Section 5.2:

• Very strong participation requires that participating always yields
a strictly preferred allocation whenever this is possible.

• Strong participation prescribes that participating always yields a
weakly preferred allocation.

• Participation forbids that for some assignment problem, abstain-
ing yields a more preferred result.

95 Such preferences are also known as nonexogenous preferences and commonly assumed
in the context of assignment or fair division (see, e.g., Bouveret et al., 2016).



106 the no-show paradox for random assignment rules

Since we restrict ourselves to stochastic dominance in this chapter, we
will henceforth drop the SD for all notions of participation.

Note that every assignment problem can be seen as a voting prob-
lem, where the set of voters equals the set of agents and the set of
alternatives is the set of deterministic assignments (Aziz et al., 2013c).
Under the assumption that a voter is indifferent in between any two
assignments awarding him an identical allocation, we can easily lift
preferences over objects to preferences over assignments. This trans-
formation, however, causes a large blow-up as the original n objects
induce n! deterministic assignments, i.e., alternatives.

6.2 results and discussion

We now introduce three popular random assignment rules together
with a class of random assignments and study to which extent they
allow for manipulation by strategic abstention, or, rather, incentivize
participation. As motivational example, consider a company that as-
signs office space to workers using the probabilistic serial (PS) rule.
The default preference preassigned to every worker is complete indif-
ference and it is up to him to update his preferences before a given
deadline or not. We prove that a worker is always strictly better off
(whenever an improvement is possible at all) by updating his prefer-
ences and thus participating in the mechanism, no matter what his
underlying vNM utility function is. By contrast, it is well-known that
PS fails to satisfy strategyproofness.96

In the following, we point out similar differences with respect to
the degrees of participation and strategyproofness satisfied whenever
suitable. As a basic principle, we find that all rules fare a lot better in
terms of participation than in terms of strategyproofness.

6.2.1 Random Serial Dictatorship

The characteristic feature of random serial dictatorship (RSD), also
known as random priority, is its resistance to strategic manipulation
by a single agent, i.e., RSD satisfies strong strategyproofness (see,
e.g., Barberà et al., 1998; Bogomolnaia and Moulin, 2001). This di-
rectly implies that RSD also satisfies strong participation. However,
RSD violates group-strategyproofness. By contrast and perhaps sur-
prisingly, we will show that RSD satisfies strong group-participation.

Typically, RSD is defined for the special case where all agents have
strict preferences over objects. Our definition extends RSD to the

96 While PS satisfies strategyproofness for strict preferences, it fails to do so for general
preferences (Bogomolnaia and Moulin, 2001; Katta and Sethuraman, 2006). Note
once more that what is named strategyproofness here is sometimes referred to as
weak strategyproofness in the literature. PS fails to satisfy the stronger notion of stra-
tegyproofness here called strong strategyproofness even for strict preferences.
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full preference domain (see also Bogomolnaia et al., 2005; Aziz et al.,
2013a). For better exposition, we start by defining RSD for agents
with strict preferences: first, a permutation of agents is drawn uni-
formly at random, then the agents successively choose their most
preferred object among the remaining objects according to the order
given by the permutation. For general preferences, this process is not
well-defined as agents may have multiple most preferred objects. In
this case, an agent narrows down the set of assignments to assign-
ments in which he is allocated one of them.

Note that RSD as we define it for the assignment setting is equiv-
alent to RSD in the domain of voting (see Section 5.1.2). In particu-
lar, the random assignment returned by RSD corresponds exactly to
the lottery over deterministic assignments that would have been re-
turned by RSD if the assignment problem was transferred to a voting
problem first. We here provide an alternative definition relying on
permutations that will turn out to be more convenient.

Formally, let ΠN be the set of all permutations of N. For a pref-
erence relation %i and a set of deterministic assignments M ′ ⊆ M,
recall that

max %i(M
′) = {M ∈M ′ : M %i M

′ for all M ′ ∈M ′}

is the set of most preferred assignments according to %i in M ′.97 For
% ∈ %(O)N, π ∈ ΠN, and k ∈ {1, . . . ,n}, we define inductively

σk(%,π) =

{
max%π(1)(M) if k = 1, and

max%π(k)(σ
k−1(%,π)) if k ∈ {2, . . . ,n}.

Then, σn(%,π) is the outcome of serial dictatorship according to the serial dictatorship

permutation π. Note that this set may contain more than one de-
terministic assignment. We resolve this ambiguity by randomizing
uniformly over these assignments and define σ(%,π) as the uniform
distribution over σn(%,π). RSD is defined by randomizing uniformly random serial

dictatorshipover all permutations of agents, i.e.,

RSD(%) = 1/n!
∑
π∈ΠN

σ(%,π).

Example 6.2
Consider the assignment problem (N,O,%) with N = {1, 2, 3},
O = {a,b, c}, and % as given below.98

% =

1 : {a,b}, c
2 : a,b, c
3 : b,a, c

RSD(%) =

1/3 1/3 1/3
2/3 0 1/3

0 2/3 1/3


97 If agent i is assigned object o in M and o ′ in M ′, then M %i M

′ holds if o %i o
′.

98 In the assignment setting it is common to denote preference profiles horizontally
instead of vertically, i.e., agents’ preferences are depicted as rows instead of columns
with more preferred objects to the left.
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To illustrate the definition, we explain the computation for the
permutation π = (1, 2, 3). Agent 1 narrows down the set of as-
signments to all assignments where he is assigned either object
a or object b. Out of these, agent 2 prefers the assignments
where he is assigned object a (and hence agent 1 is assigned
object b). In the only remaining assignment, agent 3 is assigned
object c.

Our first result states that RSD satisfies very strong participation.

Corollary 6.3
RSD satisfies very strong participation.

Proof. The statement follows directly from Theorem 5.5 and the ob-
servation that assignment is a special case of voting (see, e.g., Aziz
et al., 2013c).

We proceed by showing that, in contrast to Theorem 6.4, RSD vio-
lates group-strategyproofness.99 To this end, consider the assignment
problem (N,O,%) with N = {1, 2, 3, 4}, O = {a,b, c,d} and % as fol-
lows.

% =

1 : a,b, c,d
2 : a,b, c,d
3 : b,a,d, c
4 : b,a,d, c

RSD(%) =


5/12 1/12 5/12 1/12
5/12 1/12 5/12 1/12
1/12 5/12 1/12 5/12
1/12 5/12 1/12 5/12


Then, the group consisting of all four agents can manipulate by re-
porting the preferences % ′.

% ′ =

1 : a, c,b,d
2 : a, c,b,d
3 : b,d,a, c
4 : b,d,a, c

RSD(% ′) =


1/2 0 1/2 0
1/2 0 1/2 0

0 1/2 0 1/2

0 1/2 0 1/2


Next, we consider group-participation.

Theorem 6.4
RSD satisfies strong group-participation.

Proof. The proof relies on considering the outcome of serial dictator-
ship for all possible permutations of agents in N. We make use of
the fact that if S abstains, it is irrelevant whether we consider permu-
tations of N \ S and distribute the remaining probabilities uniformly
among agents in S, or instead consider all permutations of N with
agents in S being completely indifferent. Hence, for every permuta-
tion of agents in N \ S where S receives some probability α > 0 of
o ∈ O, we have

(
|N|

|S|

)
|S|! permutations of agents in N where S receives

99 This statement is included to illustrate the contrast with group-participation. It
follows from RSD’s well-documented lack of SD-efficiency (see also Bade, 2016).
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the very same probability α.100 Note that the fraction of profiles in
which agent i ∈ S precedes all other agents in S is exactly 1/|S|. As-
suming object o is i’s first choice, he would thus have received o with
probability at least α in all permutations where he is first out of S, had
he participated. Going back to all

(
|N|

|S|

)
|S|! permutations of agents in

N, we hence have that when S participates, i receives o with proba-
bility at least 1/|S|α while i’s probability for o is exactly 1/|S|α when
S abstains.

Formally, we show that for all assignment problems (N,O,%) and
agents i ∈ N, we have that p(i,Oki ) > p−S(i,O

k
i ) for all S ⊆ N, i ∈ S,

and k ∈ [ki]. Here, we use p = RSD(%). To this end, let (N,O,%)

be an assignment problem and choose S ⊆ N, i ∈ S, and k ∈ [ki] ar-
bitrarily. We begin with the case where agents in S abstain, i.e., they
are completely indifferent. Recall that under this circumstance, for
RSD it is irrelevant whether we include agents in S in the sequence
of agents or only focus on N \ S and distribute the remaining proba-
bilities uniformly.

Consequently, we first consider permutations of N \ S only. By
ΠN\S denote the set of all permutations of N \ S. Let π ∈ ΠN\S and
let απ be the corresponding probability share of Oki given to S.

Note that for each π, there exist
(
|N|

|S|

)
|S|! permutations of N using

which serial dictatorship yields the same probability share απ of Oki
for S. A fraction of exactly 1/|S| of these sequences list i as jth agent
out of S. Thus, i precedes all agents in S in 1/|S| of sequences and
had S participated, he would have received a probability share of at
least min{1,απ} of Oki in these cases. In another 1/|S| of the sequences,
i comes second and had S participated, he would have received a
probability share of at least max{0, min{1,απ − 1}} of Oki . For the gen-
eral case of i being at the lth position of agents in S, he would have
received a probability share of at least

max{0, min{1,απ − (l− 1)}}

of Oki had S participated.
Summing up all possible positions with respect to agents in S, we

obtain that had S participated, i would have received a probability
share of at least

bαπc/|S|+ 1/|S| (απ − bαπc)

of Oki . Here, the first summand corresponds to positions where i
would receive a full probability share of one, while the second sum-
mand models situations in which i would receive a probability share
of only απ − bαπc < 1. Note that since

bαπc/|S|+ 1/|S| (απ − bαπc) = 1/|S|απ,

100 We consider a single object o ∈ O and not a set of objects O ′ ⊆ O as would be
required in order to show strong group-participation for reasons of exposition. See
the formal proof for arguments employing sets.



110 the no-show paradox for random assignment rules

we have that had S participated, i would have received at least the
same probability share of objects in Oki for all orderings π ∈ ΠN\S.
We consequently have that p−S(i,Oki ) 6 p(i,O

k
i ).

For the sake of clarity, we put all (in)equalities together and obtain

p−S(i,Oki ) = 1/|S|p−S(S,Oki )

= 1/(|N\S|)!
∑

π∈ΠN\S

1/|S|απ

= 1/(|N\S|)!
∑

π∈ΠN\S

bαπc/|S|+ 1/|S| (απ − bαπc)

6 p(i,Oki ),

which completes the proof.

6.2.2 Probabilistic Serial

In contrast to RSD, the probabilistic serial (PS) rule is a relatively new
assignment rule proposed by Bogomolnaia and Moulin (2001). They
also study PS axiomatically and find that in the domain of strict
preferences—for which PS is originally defined only—it satisfies SD-
efficiency, envy-freeness and strategyproofness but violates strong
strategyproofness.

Intuitively, PS works as follows: We assume all objects to be edibleprobabilistic serial

and of equal size one. At time t = 0, all agents simultaneously begin
to eat their respective favorite object at uniform speed. If an object
is completely consumed, all agents involved at this point switch to
their most preferred remaining object, which they then start to eat.
Reaching time t = 1, no more objects are available and each agent
has consumed a total amount of one. Finally, the fraction an agent
has eaten of a certain object corresponds directly to the probability
with which it is awarded to him.

Example 6.5
Consider the assignment problem (N,O,%) with N = {1, 2, 3},
O = {a,b, c}, and % as given below.

% =

1 : a,b, c
2 : a, c,b
3 : b,a, c

PS(%) =

1/2 1/4 1/4
1/2 0 1/2

0 3/4 1/4


In the beginning, agents 1 and 2 are eating a while agent 3 is
eating b. At time t = 1/2, a is completely consumed while half
of b has been eaten by agent 3. 1 and 2 continue on to b and c,
their respective second most preferred objects. At time t = 3/4,
b is completely consumed as well and all agents simultaneously
finish c. Put together, the random assignment returned by PS
is as given above.
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The extension of PS to the full preference domain that is most
widely accepted is due to Katta and Sethuraman (2006). They name
their algorithm, which is heavily based on maximal flows in net-
works, extended probabilistic serial. Katta and Sethuraman prove that
it still satisfies SD-efficiency and envy-freeness but is no longer strat-
egyproof.101 Whenever we refer to PS in the sequel, we mean the
generalization by Katta and Sethuraman (2006).

Example 6.6
To get a first taste, consider the assignment problem (N,O,%)

with N = {1, 2, 3, 4}, O = {a,b, c,d}, and % as given below. In
contrast to a naive generalization, agent 1 is not ‘eating’ a and
b simultaneously but instead he is reserving some probability
of {a,b} with identical uniform speed. At t = 2/3, we arrive
at a point where three agents have each reserved a share of 2/3

of {a,b}—or at least one object out of it—meaning that the set
{a,b} is completely consumed. We therefore say that {a,b} is a
bottleneck and PS proceeds by gradually identifying subsequent
bottlenecks and distributing the included objects to the compet-
ing agents in a fair way. For the preference profile % below, PS
thus finds the bottlenecks {a,b}, {c}, {d} in chronological order.

% =

1 : {a,b}, c,d
2 : a, c,b,d
3 : b,a,d, c
4 : c,d,a,b

PS(%) =


1/3 1/3 1/9 2/9
2/3 0 1/9 2/9

0 2/3 0 1/3

0 0 7/9 2/9


As stated before, the implementation makes use of flows on net-

works that are redesigned after each bottleneck. We omit a more
detailed and formal explanation of PS for general preferences in the
interest of space and refer to Katta and Sethuraman (2006).

Recently, PS was generalized to the more general domain of voting
by Aziz and Stursberg (2014), who call the resulting rule the egalitar-
ian simultaneous reservation rule. Interestingly, this rule violates strong
participation (Aziz, 2016).

We show that within the domain of assignment, PS fares not only
better but indeed optimal with respect to manipulation by strategic
abstention, i.e., PS satisfies the strongest notions of participation con-
sidered here: very strong participation and strong group-participa-
tion. This stands in contrast to the voting domain as well as to the
related concept of strategyproofness.

Theorem 6.7
PS satisfies very strong participation.

Proof. It follows from Theorem 6.8 below that PS satisfies strong par-
ticipation. We now prove that even the stronger notion of very strong

101 More so, Katta and Sethuraman (2006) show that SD-efficiency and envy-freeness
are incompatible with strategyproofness on the full preference domain.
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participation holds. Therefore, focus on the first level of preferences
and let p be the random assignment returned by PS. First, note that

p−i(i,O1i ) 6 p(i,O
1
i ) 6 1

is implied by strong participation. Furthermore, if p(i,O1i ) = 1, very
strong participation is satisfied. Thus, the only case remaining for
examination is

p−i(i,O1i ) 6 p(i,O
1
i ) < 1.

We will show that it always holds that p−i(i,O1i ) < p(i,O
1
i ), which

implies very strong participation.
Note that by the algorithm used for PS (see Katta and Sethura-

man, 2006), we have that 0 < p(i,O1i ). In addition, p(i,O1i ) < 1 by
the above assumption, thus, O1i has to be part of some bottleneck
B ⊆ O that occurs at time tB. Let the set of agents who cause said
bottleneck to occur be SB. We additionally use the notation Γ taken
from Katta and Sethuraman (2006) and slightly modify it to better fit
our needs: Γt(S) denotes the union of objects that agents S are eating
(or reserving) at time t.

We distinguish whether B is the first bottleneck or not:

1. O1i is part of the first bottleneck. We consequently have that
ΓtB(SB) = ΓtB(SB \ {i}) because otherwise a different bottleneck
would have occurred earlier for agents SB \ {i}. To see this, as-
sume for contradiction ΓtB(SB) 6= ΓtB(SB \ {i}). It follows that

|ΓtB(SB \ {i})| 6 |ΓtB(SB)|− 1

and thus
|ΓtB(SB\{i})|

|SB\{i}|
<

|ΓtB(SB)|

|SB|
.

This contradicts the first bottleneck appearing for SB—a dif-
ferent one would have appeared earlier for SB \ {i}. Hence,
ΓtB(SB) = ΓtB(SB \ {i}).

Since |SB|− |SB \ {i}| = 1, we conclude that
|ΓtB(SB\{i})|

|SB\{i}|
6 1.

Hence, given that i abstains, we still have a bottleneck that in-
cludes agents SB \ {i} (not necessarily the first) and it holds that
0 = p−i(i,O1i ) < p(i,O

1
i ).

102

2. O1i is not part of the first bottleneck. For the bottleneck includ-
ing O1i , we have that

p(SB,B) = |ΓtB(SB)| = |B|

102 Theoretically, agents SB \ {i} do not necessarily belong to the same bottleneck. How-
ever, they will each be part of some bottleneck before the algorithm terminates. We
omit details for the sake of readability.
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and p(SB,B) < |SB|. Consequently p(i ′,B) < 1 for all i ′ ∈ SB
and for similar arguments as above we have that

ΓtB(SB) = ΓtB(SB \ {i}).

Hence,

p(SB \ {i},B) < |ΓtB(SB \ {i})|,

which means that the bottleneck B ′ including O1i will occur
strictly later at time t = tB ′ 6 1 for a possibly different group
of agents SB ′ ⊇ SB \ {i}.103 At this point, we have

p−i(SB ′ ,B ′) = |ΓtB ′ (SB ′)|.

Since tB ′ > tB and thus p−i(i ′,B ′) > p(i ′,B ′) for all i ′ ∈ SB ′ as
well as p−i(i ′,B ′) = p(i ′,B) for all i ′ ∈ SB, it holds that

p(SB,B) < p−i(SB,B).

Putting everything together, we obtain

p−i(i,O1i ) 6 |ΓtB ′ (SB ′)|− p−i(SB ′ \ {i},B
′)

< |ΓtB(SB)|− p(SB \ {i},B)

= p(i,B)

= p(i,O1i ).

Thus, p−i(i,O1i ) < p(i,O1i ) for both cases and very strong partici-
pation is satisfied.

Theorem 6.8
PS satisfies strong group-participation.

Proof. Let (N,O,%) be an assignment problem with O = {o1, . . . ,on},
S ⊆ N the group of agents that abstains, and p = PS(%). In the case
where S participates, we call the bottlenecks that appear when execut-
ing the algorithm in order to determine PS B1,B2,B3, . . . ⊆ O, where
the naming is done in chronological order with arbitrary tie-breaking.
Denote by β(Oki ) the minimal l ∈N such that

Oki ⊆
⋃
j∈[l]

Bj.

We want to show that p %SD
i p−S for all i ∈ S, which is equivalent to

p(i,Oki ) > p−S(i,O
k
i )

for all i ∈ S, k ∈ [ki].
First, we claim that p−S %SD

i p for all i ∈ N \ S. This holds true as
all original bottlenecks either remain unchanged when S abstains or

103 As before, SB \ {i} do not necessarily contribute to the same bottleneck, they may be
part of different ones. However, all of them occur at some point between tB and the
hypothetical tB′ . We once more omit details for the sake of readability.
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occur later (in a possibly changed version). In particular, they cannot
appear earlier, as less agents compete for the objects. Hence,

p−S(i,Oki ) > p(i,O
k
i )

for all i ∈ N \ S, k ∈ [ki], which proves the claim.
Now consider any agent i ∈ S, k ∈ [ki] and define

B =
⋃

j∈[β(Oki )]

Bj,

the set of all objects that are part of some bottleneck up to Bβ(Oki ).
We have that p(i,Oki ) = p(i,B) since for all Bj, j ∈ [β(Oki )], such that
Bj ∩Oki = ∅, i is not awarded any probability. However, they are com-
pletely consumed by other agents until all objects in B are consumed,
hence, p(i,Bj) = 0 holds for them.

Note that i is awarded some probability in bottleneck Bβ(Oki ), which
means that at this point, no other agent can have received more total
probability of B than i. In particular, this holds for all agents in S. We
thus conclude that

p(i,B) > 1/|S|p(S,B).

Concerning the total probability awarded up to the moment of
bottleneck Bβ(Oki ), we have that

p(S,B) + p(N \ S,B) = |B|

and consequently

p(S,B) = |B|− p(N \ S,B).

We now make use of our initial claim about agents not in S prefer-
ring p−S to p, and conclude

|B|− p(N \ S,B) > |B|− p−S(N \ S,B).

A variant of the sum formula of |B| which we used before yields

|B|− p−S(N \ S,B) = p−S(S,B).

Recall that by our definition of abstention, a group S that does not
participate is given the ‘remaining’ probability of all objects which is
then distributed evenly among agents in S. Thus,

1/|S|p−S(S,B) = p−S(i,B)

and since Oki ⊆ B, we have that

p−S(i,B) > p−S(i,Oki ).
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Putting everything together, we obtain a chain of (in)equalities sum-
marizing our proof:

p(i,Oki ) = p(i,B)

> 1/|S|p(S,B)

= 1/|S| [|B|− p(N \ S,B)]

> 1/|S| [|B|− p−S(N \ S,B)]

= 1/|S|p−S(S,B)

= p−S(i,B)

> p−S(i,Oki )

This shows that strong group-participation is satisfied by PS.

6.2.3 Boston Mechanism

The Boston mechanism (BM) originates from the practical problem of
school choice (see, e.g., Balinski and Sönmez, 1999; Abdulkadiroğlu
and Sönmez, 2003; Abdulkadiroğlu et al., 2005; Abdulkadiroğlu et al.,
2009). Given students have varying preferences over different schools
in the surrounding area, but each school can only accept a limited
amount of students, how should vacant seats be distributed? In this
context, BM is arguably one of the simplest rules: Consider only top- Boston mechanism

ranked schools in the first round and assign a seat at the top-ranked
school to every student as long as there are enough available seats; if
not break ties uniformly at random. Now, remove all students who
have been assigned a seat and their respective seats, and consider the
students’ second most-preferred schools in the next round. Again,
seats are assigned to students and ties are broken uniformly at ran-
dom. This procedure continues until no students are left.104

Example 6.9
Consider the assignment problem (N,O,%) with N = {1, 2, 3},
O = {a,b, c}, and % as given below.

% =

1 : a,b, c
2 : a, c,b
3 : b,a, c

BM(%) =

1/2 0 1/2
1/2 0 1/2

0 1 0


In the beginning, agents 1 and 2 are applying to a while agent
3 applies to b. Since 3 is the only one focusing on b at this
moment, b is awarded to him. a, on the other hand, goes to
agents 1 and 2 with probability 1/2 each. BM now branches out.

104 Note that what we describe here is sometimes also called naive Boston mechanism
in contrast to the adaptive Boston mechanism, where students apply to their most-
preferred school that still has free seats (see, e.g., Alcalde, 1996; Mennle and Seuken,
2014). We here consider the naive BM for simplicity. Our results, however, also hold
for the adaptive BM.
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First, assume a was given to 1. Having been assigned an
object, agents 1 and 3 as well as objects a and b leave the market
after round one and in round two, agent 2 applies to his second
most preferred object c. Being the only candidate, 2 receives c
and the mechanism terminates.

Next, assume awas given to 2. Similar to above, agents 2 and
3 and objects a and b leave the market after round one. In the
second round, 1 would want to apply to b which is, however,
not available anymore. Hence, we directly continue with round
three where 1 applies to and receives his third most preferred
object c.

Since both cases happen with identical probability 1/2 each,
we obtain the random assignment BM(%) given above.

In our framework, we assume there is an equal number of schools
and students with only one seat per school. In addition, we require
that individual preferences are strict—it is unclear how to define BM
for general preferences.

Unfortunately, the relative straightforwardness of BM comes at a
price: Among other shortcomings, BM may yield unstable assign-
ments and is easily manipulable by a large number of agents (Ab-
dulkadiroğlu and Sönmez, 2003; Chen and Sönmez, 2006; Ergin and
Sönmez, 2006).105 These findings reduced BM’s popularity among
both researchers and practitioners, indeed it has often been replaced
by the famous deferred acceptance mechanism due to Gale and Shapley
(1962). Nevertheless, BM is still considered an important assignment
rule, which is also reflected by a recent axiomatic characterization
due to Kojima and Ünver (2014).

With respect to participation, it turns out that, when only single
agents abstain, it fares equally well as RSD and PS, i.e., it satisfies
very strong participation. When considering abstention by groups of
agents, results are mixed. While BM satisfies group-participation, it
violates strong group-participation, which is satisfied by both RSD
and PS.

Theorem 6.10

BM satisfies very strong participation.

Proof. Let (N,O,%) be an assignment problem with N = {1, . . . ,n},
O = {o1, . . . ,on}, i ∈ N, and p = BM(%). Without loss of generality,
we may assume that i has preferences �i : o1, . . . ,on. First, assume
that i is the only agent who ranks o1 at the top. In this case, we have
that p(i,o1) = 1 and very strong participation is satisfied as i gets the
best possible result when participating.

105 Following these results some recent papers analyze manipulations of school choice
mechanisms in general and BM in particular based on real-world data (see, e.g.,
Burgess et al., 2015; Dur et al., 2018).
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Now, suppose there exists another agent who also lists o1 as top
choice. We have that p−i(i,o1) = 0 and p(i,o1) > 0. In addition, for
all agents i ′ ∈ N−i and k ∈ [ki ′ ], we have that

p−i(i
′,Oki ′) > p(i

′,Oki ′).

This holds true as reduced competition cannot ‘harm’ the remaining
agents.

Going back to the abstaining agent i, we compare p(i,oj) to p−i(i,oj)
for 2 6 j 6 ki. We have that if p−i(i,oj) > p(i,oj) for some j, then

p−i(N−i,oj) < p(N−i,oj).

By the observation above, it however holds that

p−i(i
′,Oki ′) > p(i

′,Oki ′)

for all i ′ 6= i and k ∈ [ki ′ ], which means that

p(N−i,O
j−1
i ) < p−i(N−i,O

j−1
i ),

where

p−i(i,oj) − p(i,oj) 6 p−i(N−i,O
j−1
i ) − p(N−i,O

j−1
i ).

Hence,

p−i(i,Oki ) 6 p(i,O
k
i )

for all k ∈ [ki] and

p−i(i,o1) = 0 < p(i,o1)

by the initial assumption.
Put less formally, even though i’s probability for some object oj can

increase, his maximum gain in probability is capped by the sum of
probabilities he has lost for objects {o1, . . . ,oj−1}. Together with the
fact that by abstaining, i loses all probability for o1, this shows very
strong participation.

Theorem 6.11

BM does not satisfy strong group-participation.

Proof. Consider the following assignment problem (N,O,%) with
agents N = {1, 2, 3, 4}, objects O = {a,b, c,d}, and % as given below
and the corresponding random assignment p = BM(%).

% =

1 : a,b, c,d
2 : a,b, c,d
3 : b,a, c,d
4 : d,a,b, c

p =


1/2 0 1/2 0
1/2 0 1/2 0

0 1 0 0

0 0 0 1
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If agents 1, 2, and 3 abstain, i.e., S = {1, 2, 3}, each of them is assigned
the uniform lottery over objects a, b, and c, i.e.,

p−S =


1/3 1/3 1/3 0
1/3 1/3 1/3 0
1/3 1/3 1/3 0

0 0 0 1

 .

But p 6%SD
i p−S for i ∈ {1, 2}. Hence, BM violates strong group-

participation.

Theorem 6.12

BM satisfies group-participation.

Proof. In order to prove group-participation of BM, we have to show
that for no assignment problem (N,O,%) and S ⊆ N it holds that
p−S �SD

i p for all i ∈ S where p = BM(%).
We first consider the case where at least two agents i, i ′ out of S

have disjoint most preferred objects. For reasons of readability, as-
sume i’s favorite object is o1. In this instance, we have that S’ total
probability for objects top-ranked among S cannot increase when S
abstains, i.e., p−S(S,o) 6 p(S,o) for all o ∈ O1j , j ∈ S. Since it also
holds that p(i,o1) > p(j,o1) for all j ∈ S and

p(i,o1) > p(i ′,o1) = 0,

we obtain in total

p−S(i,o1) = 1/|S|p−S(S,o1)

6 1/|S|p(S,o1)

< p(i,o1).

Consequently, p−S 6�SD
i p.

Now assume all agents in S have identical first k levels of prefer-
ences. If p−S(S,Oki ) = |S|, i ∈ S, then also p(S,Oki ) = |S| and p %i p−S
for all i ∈ S. If on the other hand p−S(S,Oki ) < |S|, i ∈ S, then either
p(S,Oki ) = |S| and consequently p %SD

i p−S for all i ∈ S or

p(i,Ok+1i ) > p−S(i,Ok+1i )

for similar reasons as above, and thus p−S 6�SD
i p. This completes the

proof.

6.2.4 Popular Random Assignments

We finally consider a class of random assignment rules that is based
on the notion of popularity. Popularity is first considered in the con-
text of deterministic assignments by Gärdenfors (1975).106 An assign-

106 An increasing amount of attention by researchers led to a variety of papers dealing
with popularity in the past decade (see, e.g., Abraham et al., 2007; Kavitha and Nasre,
2009; Biró et al., 2010; McDermid and Irving, 2011; Cseh et al., 2015; Brandl and
Kavitha, 2018), see also Cseh (2017) for a detailed overview and more explanations.
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ment is popular if there exists no other assignment that is preferred popular assignment

by a majority of those agents that are not indifferent in between both
assignments. Popular assignments correspond to weak Condorcet
winners in social choice theory and unfortunately do not have to ex-
ist.

The problem of potential nonexistence is addressed by Kavitha et
al. (2011), who introduce popular random assignments. A random popular random

assignmentassignment is popular if there does not exist another random assign-
ment that is preferred by an expected majority of agents. Formally, we
first define a function φi for every agent i ∈ N, φi : O×O→ R,

φi(o,o ′) =


1 if o �i o ′,
−1 if o ′ �i o, and

0 otherwise.

Making use of this notation and assuming that O = {o1,o2, . . . }, a
random assignment p is popular if∑

i∈[n]

∑
j,j ′∈[n]

p(i,oj)p ′(i,oj ′)φi(oj,oj ′) > 0 for all p ′ ∈ ∆(A).

A popular random assignment rule is a rule that always returns some popular random
assignment rulepopular random assignment.

Example 6.13

Consider the assignment problem (N,O,%) with N = {1, 2, 3},
O = {a,b, c}, and % as given below.

% =

1 : a,b, c
2 : a, c,b
3 : b,a, c

pλ =

 λ 0 1− λ

1− λ 0 λ

0 1 0


This assignment problem allows for two popular assignments,
p0 and p1, i.e., pλ as given above with λ ∈ {0, 1}. In addition,
we have infinitely many popular random assignments, namely
pλ, 0 6 λ 6 1.

In contrast to RSD, whose outcome is #P-complete to compute
(Aziz et al., 2013b), popular random assignments can be found effi-
ciently via linear programming (Kavitha et al., 2011). However, even
though finding popular random assignment is computationally easy,
there unfortunately is no intuitive procedure that makes finding them
simple for humans. Since popular random assignments need not be
unique, this is especially true if one is tasked to find all of them.107

The axiomatic study of popular random assignment rules was initi-
ated by Aziz et al. (2013c), who show that all popular random assign-
ment rules satisfy SD-efficiency and there always exists at least one

107 Brandt et al. (2017b) study the uniqueness of popular random assignments and give
some conditions under which either a unique or infinitely many popular random
assignments exist.
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popular random assignment satisfying equal treatment of equals.108

On the other hand, popularity is incompatible with envy-freeness
and strong SD-strategyproofness if n > 3—impossibilities that are
strengthened to weak envy-freeness and SD-strategyproofness for
n > 5 and n > 7, respectively, by Brandt et al. (2017b).

Aziz et al. (2013c) also point out that popular random assignment
rules are a special case of probabilistic voting rules returning maxi-
mal lotteries (see Section 5.1.2 and Section 5.3.4). To this effect, recall
Theorem 5.14, which states that every probabilistic voting rule return-
ing maximal lotteries satisfies PC-group-participation. We therefore
directly obtain the following statement.

Corollary 6.14

All popular random assignment rules satisfy group-participa-
tion.

Proof. The statement follows directly from Theorem 5.14 and the ob-
servation that assignment is a special case of voting (see, e.g., Aziz
et al., 2013c).

Again, this result stands in contrast to results about strategyproof-
ness because popular random assignment rules are manipulable (Aziz
et al., 2013c; Brandt et al., 2017b).

For the remainder of this section, we make the reasonable assump-
tion that popular random assignment rules assign the same lottery
to all abstaining agents, i.e., to all agents that are indifferent between
all objects. It turns out that the strongest notions of participation and
group-participation we consider are not satisfied by popular random
assignments.

Theorem 6.15

All popular random assignment rules violate very strong parti-
cipation and strong group-participation.

Proof. We start with very strong participation. To this end, let (N,O,%)

be an assignment problem with N = {1, 2, 3}, O = {a,b, c}, and % as
depicted below.

% =

1 : a, c,b
2 : a,b, c
3 : a,b, c

p =

 0 0 1

λ 1− λ 0

1− λ λ 0


For this assignment problem, all popular random assignments are of
the form pwith 0 6 λ 6 1. Hence, p(1, c) = p−1(1, c) = 1 even though
c 6∈ O11, which violates very strong participation.

108 Popular random assignments even satisfy the stronger notion of PC-efficiency.
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very strong
participation

strong group-
participation

group-
participation

RSD X (Cor. 6.3) X (Thm. 6.4) X
PS X (Thm. 6.7) X (Thm. 6.8) X

BM X (Thm. 6.10) – (Thm. 6.11) X (Thm. 6.12)
PRA – (Thm. 6.15) – (Thm. 6.15) X (Cor. 6.14)

Table 6.1: Overview of results; by definition, strong group-participation im-
plies group-participation, i.e., a checkmark in the second column
implies a checkmark in the third column; PRA stands for rules
returning popular random assignments.

For strong group-participation, consider the assignment problem
(N ′,O ′,% ′) with N ′ = {1, 2, 3, 4}, O ′ = {a,b, c,d} and % ′ as depicted
below.

% ′ =

1 : a,b, c,d
2 : a,b, c,d
3 : b,a, c,d
4 : d,a,b, c

All popular random assignments for this assignment problem are of
the form p ′ with 0 6 λ 6 1. Now, if S = {1, 2, 3} abstains, only agent
4 remains and p ′−S, as given below, is the unique popular random
assignment.

p ′ =


λ 0 1− λ 0

1− λ 0 λ 0

0 1 0 0

0 0 0 1

 p ′−S =


1/3 1/3 1/3 0
1/3 1/3 1/3 0
1/3 1/3 1/3 0

0 0 0 1


For at least one agent i ∈ {1, 2}, we have that

p ′(i,O2i ) 6 1/2 < 2/3 = p ′−S(i,O
2
i )

contradicting strong group-participation.

6.3 conclusion

We studied well-known random assignment rules under the assump-
tion that participation is optional. In the assignment setting, our main
concern are not agents who deliberately abstain to improve their as-
signment, mostly because this requires the agents to be very well-
informed about the others’ preferences. Rather, we think of situa-
tions where participation is associated with a small effort or cost, e.g.,
for figuring out one’s own preferences. Our positive results show
that participation is encouraged because it can only lead to more util-
ity (sometimes even strictly). Participation is also desirable from the



122 the no-show paradox for random assignment rules

planner’s perspective because it is required to identify efficient as-
signments of the objects.

Our results, which are summarized in Table 6.1, show that all con-
sidered rules satisfy a weak notion of participation (even for groups
of agents). Perhaps surprisingly, RSD and PS even satisfy a strong no-
tion of group-participation that is prohibitive in the more general vot-
ing domain (Theorem 5.11).109 Moreover, all considered rules except
popular random assignment rules even provide strict incentives to
participate. Whether popular random assignments satisfy strong par-
ticipation remains an interesting, but presumably challenging, open
problem.

Remark 6.16

It is possible to define a more general property, the satisfaction
of which by a random assignment rule is sufficient to imply
very strong participation. To this end, say that a random as-
signment rule satisfies this monotonicity-like property if, when
an indifference class in %i is split into two with everything else
remaining unchanged, the total probability awarded to i for the
new lower indifference class as well as probabilities for all less
preferred indifference classes may not increase. This alone al-
ready implies strong participation. If we additionally demand
that—whenever possible—strictly more probability is given to
the top indifference class of %i compared to when the upper
two indifference classes of %i were merged, we obtain very
strong participation.

The proof showing the link to strong participation works via
first assuming i abstains, i.e., is completely indifferent, and then
building %i bottom-up. Thus, we let the least preferred objects
form a new bottom indifference class and proceed by repeating
this step until we end up with %i. By transitivity of the SD-
extension, we directly obtain strong participation; very strong
participation follows from the above-mentioned requirement.

First, note that RSD and PS can be shown to satisfy this
monotonicity-like property as well as the additional demand
for the top indifference class, i.e., we could also have shown
very strong participation this way. Additionally, we see that
both conditions seem quite natural and in particular the first
one has the alluring characteristic that it incentivizes agents to
specify their preferences in more detail. We would expect all
reasonable random assignment rules that focus on individual
preferences instead of (weighted) majority comparisons and as-
sign objects in a ‘continuous’ way to satisfy both conditions.
This highlights that in the context of random assignment, pro-

109 More precisely, strong group-participation is prohibitive when we additionally re-
quire a very weak natural notion of efficiency. On its own, strong group-participation
is satisfied by, e.g., any constant rule.
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viding a strict incentive for participating is way more common
than in the domain of (probabilistic) voting. In a reverse con-
clusion, we might deduce that a failure of (very) strong parti-
cipation is more severe for random assignment rules compared
to probabilistic voting rules—a possible argument against the
practical application of any such rule.

For the sake of completeness, we remark that our monoto-
nicity-like property informally introduced above heavily relies
on agents’ preferences to be allowed to contain indifferences.
Hence, while we could have used it in order to show very strong
participation of RSD and PS, it does not help when arguing
about BM or similar rules that require strict preferences.
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